Electrochemical reduction of CO2 to CO and HCOO- using metal-cyclam complex catalysts: predicting selectivity and limiting potential from DFT

被引:5
作者
Masood, Zaheer [1 ]
Ge, Qingfeng [1 ]
机构
[1] Southern Illinois Univ, Sch Chem & Biomol Sci, Carbondale, IL 62901 USA
基金
美国国家科学基金会;
关键词
CARBON-DIOXIDE; ELECTROCATALYTIC REDUCTION; CONVERSION; PROTON; ELECTROREDUCTION; BICARBONATE; EFFICIENT; FORMATE; WATER; IRON;
D O I
10.1039/d1dt02159a
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Sustainable fuel production from CO2 through electrocatalytic reduction is promising but challenging due to high overpotential and poor product selectivity. Herein, we computed the reaction free energies of electrocatalytic reduction of CO2 to CO and HCOO- using the density functional theory method and screened transition metal(M)-cyclam(L) complexes as molecular catalysts for CO2 reduction. Our results showed that pK(a) of the proton adduct formed by the protonation of the reduced metal center can be used as a descriptor to select the operating pH of the solution to steer the reaction toward either the CO or hydride cycle. Among the complexes, [LNi](2+) and [LPd](2+) catalyze the reactions by following the CO cycle and are the CO selective catalysts in the pH ranges 1.81-7.31 and 6.10 and higher, respectively. Among the complexes that catalyze the reactions by following the hydride cycle, [LMo](2+) and [LW](3+) are HCOO- selective catalysts and have low limiting potentials of -1.33 V and -1.54 V, respectively. Other complexes, including [LRh](2+), [LIr](2+), [LW](2+), [LCo](2+), and [LTc](2+) catalyze the reactions resulting in either HCOO- from CO2 reduction or H-2 from proton reduction; however, HCOO- formation is always thermodynamically more favorable. Notably, [LMo](2+), [LW](3+), [LW](2+) and [LCo](2+) have limiting potentials less negative than -1.6 V and are based on Earth-abundant elements, making them attractive for practical application.
引用
收藏
页码:11446 / 11457
页数:12
相关论文
共 79 条
[1]   Electrocatalytic Reduction of CO2 to CH4 and CO in Aqueous Solution Using Pyridine-Porphyrins Immobilized onto Carbon Nanotubes [J].
Abdinejad, Maryam ;
Dao, Caitlin ;
Deng, Billy ;
Dinic, Filip ;
Voznyy, Oleksandr ;
Zhang, Xiao-an ;
Kraatz, Heinz-Bernhard .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (25) :9549-9557
[2]   Biochemical and artificial pathways for the reduction of carbon dioxide, nitrite and the competing proton reduction: effect of 2nd sphere interactions in catalysis [J].
Amanullah, Sk ;
Saha, Paramita ;
Nayek, Abhijit ;
Ahmed, Md Estak ;
Dey, Abhishek .
CHEMICAL SOCIETY REVIEWS, 2021, 50 (06) :3755-3823
[3]   Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO2 Fixation [J].
Appel, Aaron M. ;
Bercaw, John E. ;
Bocarsly, Andrew B. ;
Dobbek, Holger ;
DuBois, Daniel L. ;
Dupuis, Michel ;
Ferry, James G. ;
Fujita, Etsuko ;
Hille, Russ ;
Kenis, Paul J. A. ;
Kerfeld, Cheal A. ;
Morris, Robert H. ;
Peden, Charles H. F. ;
Portis, Archie R. ;
Ragsdale, Stephen W. ;
Rauchfuss, Thomas B. ;
Reek, Joost N. H. ;
Seefeldt, Lance C. ;
Thauer, Rudolf K. ;
Waldrop, Grover L. .
CHEMICAL REVIEWS, 2013, 113 (08) :6621-6658
[4]  
Asada K., 1982, Organic and bio-organic chemistry of carbon dioxide, P185
[5]   THE ADSORPTION OF NI(CYCLAM)+ AT MERCURY-ELECTRODES AND ITS RELATION TO THE ELECTROCATALYTIC REDUCTION OF CO2 [J].
BALAZS, GB ;
ANSON, FC .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1992, 322 (1-2) :325-345
[6]   Thermodynamic Considerations for Optimizing Selective CO2 Reduction by Molecular Catalysts [J].
Barlow, Jeffrey M. ;
Yang, Jenny Y. .
ACS CENTRAL SCIENCE, 2019, 5 (04) :580-588
[7]   Spectroelectrochemical investigations of nickel cyclam indicate different reaction mechanisms for electrocatalytic CO2 and H+ reduction [J].
Behnke, Shelby L. ;
Manesis, Anastasia C. ;
Shafaat, Hannah S. .
DALTON TRANSACTIONS, 2018, 47 (42) :15206-15216
[8]   NICKEL(II) CYCLAM - AN EXTREMELY SELECTIVE ELECTROCATALYST FOR REDUCTION OF CO2 IN WATER [J].
BELEY, M ;
COLLIN, JP ;
RUPPERT, R ;
SAUVAGE, JP .
JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS, 1984, (19) :1315-1316
[9]   ELECTROCATALYTIC REDUCTION OF CO2 BY NI CYCLAM2+ IN WATER - STUDY OF THE FACTORS AFFECTING THE EFFICIENCY AND THE SELECTIVITY OF THE PROCESS [J].
BELEY, M ;
COLLIN, JP ;
RUPPERT, R ;
SAUVAGE, JP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1986, 108 (24) :7461-7467
[10]   Free-energy relationships between the proton and hydride donor abilities of [HNi(diphosphine)2]+ complexes and the half-wave potentials of their conjugate bases [J].
Berning, DE ;
Miedaner, A ;
Curtis, CJ ;
Noll, BC ;
DuBois, MCR ;
Dubois, DL .
ORGANOMETALLICS, 2001, 20 (09) :1832-1839