Cellular Wireless Energy Harvesting for Smart Contact Lens Applications

被引:12
作者
Chen, Luyao
Milligan, Ben
Qu, Tony [1 ]
Jeevananthan, Luxsumi [2 ]
Shaker, George [3 ,4 ]
Safavi-Naeini, Safieddin [3 ]
机构
[1] Univ Waterloo, Emphasis Embedded Syst, Waterloo, ON, Canada
[2] Univ Waterloo, MASc Degree Monolith Microwave Integrated Circuit, Waterloo, ON, Canada
[3] Univ Waterloo, Dept Elect & Comp Engn, Waterloo, ON, Canada
[4] Univ Waterloo, Dept Mech & Mechatron Engn, Waterloo, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
MU-W; GLUCOSE; BATTERYLESS; SOC;
D O I
10.1109/MAP.2018.2859200
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An energy harvester for a smart contact lens that monitors the glucose level of a user has been developed and demonstrated. The energy harvester captures a smartphone's second-generation (2G) cellular emission and rectifies it into dc power to operate on-lens microelectronics for glucose detection and wireless data transmission. The energy harvester can reach a maximum radio frequency (RF)-to-dc power conversion efficiency of 47%. An electrically realistic human eye model was designed and fabricated using three-dimensional (3-D) printing technologies to assist in various measurements of the proposed energy harvester. For accessibility and ease of measurements, the proof-of-concept rectifier for the harvester has been designed on a 10 mm ? 30 mm ? 0.8 mm two-layer FR4 printed circuit board (PCB). The end design demonstrates that an energy harvester on a smart contact lens is able to produce 1 mW of dc power at 2.1 V via cellular emission from a smartphone placed 18 cm away. © 1990-2011 IEEE.
引用
收藏
页码:108 / 124
页数:17
相关论文
共 30 条
[1]  
[Anonymous], 2014, NAT DIAB STAT REP ES
[2]   A 24 μW, Batteryless, Crystal-free, Multinode Synchronized SoC "Bionode" for Wireless Prosthesis Control [J].
Bhamra, Hansraj ;
Kim, Young-Joon ;
Joseph, Jithin ;
Lynch, John ;
Gall, Oren Z. ;
Mei, Henry ;
Meng, Chuizhou ;
Tsai, Jui-Wei ;
Irazoqui, Pedro .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2015, 50 (11) :2714-2727
[3]  
Chen LY, 2015, IEEE ANTENNAS PROP, P358, DOI 10.1109/APS.2015.7304565
[4]   A Miniature-Implantable RF-Wireless Active Glaucoma Intraocular Pressure Monitor [J].
Chow, Eric Y. ;
Chlebowski, Arthur L. ;
Irazoqui, Pedro P. .
IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2010, 4 (06) :340-349
[5]  
Gabriel C., 2015, DIELECTRIC PROPERTIE
[6]   Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis [J].
Gao, Wei ;
Emaminejad, Sam ;
Nyein, Hnin Yin Yin ;
Challa, Samyuktha ;
Chen, Kevin ;
Peck, Austin ;
Fahad, Hossain M. ;
Ota, Hiroki ;
Shiraki, Hiroshi ;
Kiriya, Daisuke ;
Lien, Der-Hsien ;
Brooks, George A. ;
Davis, Ronald W. ;
Javey, Ali .
NATURE, 2016, 529 (7587) :509-+
[7]  
Ghanabri S., P 2015 23 IR C EL EN, P1154
[8]   RF rectifiers for EM power harvesting in a Deep Brain Stimulating device [J].
Hosain, Md Kamal ;
Kouzani, Abbas Z. ;
Tye, Susannah ;
Kaynak, Akif ;
Berk, Michael .
AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE, 2015, 38 (01) :157-172
[9]   Tear glucose dynamics in diabetes mellitus [J].
Lane, Jennifer D. ;
Krumholz, David M. ;
Sack, Robert A. ;
Morris, Carol .
CURRENT EYE RESEARCH, 2006, 31 (11) :895-901
[10]   A 3-μW CMOS Glucose Sensor for Wireless Contact-Lens Tear Glucose Monitoring [J].
Liao, Yu-Te ;
Yao, Huanfen ;
Lingley, Andrew ;
Parviz, Babak ;
Otis, Brian P. .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2012, 47 (01) :335-344