A solution-processed high-efficiency p-NiO/n-ZnO heterojunction photodetector

被引:54
作者
Debnath, Ratan [1 ]
Xie, Ting [1 ,2 ]
Wen, Baomei [1 ,3 ]
Li, Wei [4 ,5 ]
Ha, Jong Y. [1 ,6 ]
Sullivan, Nichole F. [3 ]
Nguyen, Nhan V. [4 ]
Motayed, Abhishek [1 ,6 ]
机构
[1] NIST, Mat Sci & Engn Lab, Mat Measurement Lab, Gaithersburg, MD 20899 USA
[2] Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA
[3] N5 Sensors Inc, Rockville, MD 20852 USA
[4] NIST, Semicond & Dimens Metrol Div, Phys Measurement Lab, Gaithersburg, MD 20899 USA
[5] Peking Univ, Key Lab Phys & Chem Nano Devices, Beijing 100871, Peoples R China
[6] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA
关键词
CHEMICAL-VAPOR-DEPOSITION; SOLAR-CELLS; ULTRAVIOLET PHOTODETECTORS; OXIDE HETEROSTRUCTURES; OPTICAL-PROPERTIES; HIGH-PERFORMANCE; FABRICATION; TEMPERATURE; SEMICONDUCTORS; TRANSISTOR;
D O I
10.1039/c4ra14567d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper presents a high efficiency heterojunction p-NiO/n-ZnO thin film ultraviolet (UV) photodetector (PD) fabricated on conductive glass substrates. The devices are fabricated by using a simple spin-coating layer-by-layer method from precursor solutions. Photodiodes show good photoresponse and quantum efficiency under UV illumination. With an applied reverse bias of 1 V, the devices show maximum responsivity and detectivity of 0.28 A W-1 and 6.3 x 10(11) Jones, respectively, as well as high gain with external quantum efficiency (EQE) of over 90%. By employing ultrathin Ti/Au as top UV transparent metal contacts, this architecture allows the PDs to be illuminated either through glass or metal side. Laser beam induced current is used to examine the local variation of EQE providing information on the photoresponse behavior within the device. Optical properties of NiO and ZnO deposits have also been explored.
引用
收藏
页码:14646 / 14652
页数:7
相关论文
共 49 条
[1]   Fabrication of UV photo-detector based on coral reef like p-NiO/n-ZnO nanocomposite structures [J].
Abbasi, Mazhar Ali ;
Ibupoto, Zafar Hussain ;
Khan, Azam ;
Nur, Omer ;
Willander, Magnus .
MATERIALS LETTERS, 2013, 108 :149-152
[2]   Highly sensitive hydrazine chemical sensor based on ZnO nanorods field-effect transistor [J].
Ahmad, Rafiq ;
Tripathy, Nirmalya ;
Jung, Da-Un-Jin ;
Hahn, Yoon-Bong .
CHEMICAL COMMUNICATIONS, 2014, 50 (15) :1890-1893
[3]   Modelling polycrystalline semiconductor solar cells [J].
Burgelman, M ;
Nollet, P ;
Degrave, S .
THIN SOLID FILMS, 2000, 361 :527-532
[4]   Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering [J].
Carcia, PF ;
McLean, RS ;
Reilly, MH ;
Nunes, G .
APPLIED PHYSICS LETTERS, 2003, 82 (07) :1117-1119
[5]   Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers [J].
Caruge, J. M. ;
Halpert, J. E. ;
Wood, V. ;
Bulovic, V. ;
Bawendi, M. G. .
NATURE PHOTONICS, 2008, 2 (04) :247-250
[6]   Opto-electrical properties and chemisorption reactivity of Ga-doped ZnO nanopagodas [J].
Chiu, Hsien-Ming ;
Wu, Jenn-Ming .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (18) :5524-5534
[7]   AlxGa1-xN-based solar-blind ultraviolet photodetector based on lateral epitaxial overgrowth of AlN on Si substrate [J].
Cicek, E. ;
McClintock, R. ;
Cho, C. Y. ;
Rahnema, B. ;
Razeghi, M. .
APPLIED PHYSICS LETTERS, 2013, 103 (18)
[8]   Temperature dependence of raman scattering in ZnO [J].
Cusco, Ramon ;
Alarcon-Llado, Esther ;
Ibanez, Jordi ;
Artus, Luis ;
Jimenez, Juan ;
Wang, Buguo ;
Callahan, Michael J. .
PHYSICAL REVIEW B, 2007, 75 (16)
[9]   INFRARED ABSORPTION AND RAMAN SCATTERING BY 2-MAGNON PROCESSES IN NIO [J].
DIETZ, RE ;
PARISOT, GI ;
MEIXNER, AE .
PHYSICAL REVIEW B, 1971, 4 (07) :2302-&
[10]   Optimised pulsed laser deposition of ZnO thin films on transparent conducting substrates [J].
Franklin, J. B. ;
Zou, B. ;
Petrov, P. ;
McComb, D. W. ;
Ryan, M. P. ;
McLachlan, M. A. .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (22) :8178-8182