Air-cathode structure optimization in separator-coupled microbial fuel cells

被引:47
作者
Zhang, Xiaoyuan [1 ]
Sun, Haotian [1 ]
Liang, Peng [1 ]
Huang, Xia [1 ]
Chen, Xi [1 ]
Logan, Bruce E. [2 ]
机构
[1] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China
[2] Penn State Univ, Dept Civil & Environm Engn, University Pk, PA 16802 USA
关键词
Microbial fuel cells; Air-cathode structure; Diffusion layer; Oxygen transfer; POWER-GENERATION; INTERNAL RESISTANCE; PERFORMANCE; CONVERSION; CATALYST; ANODES;
D O I
10.1016/j.bios.2011.09.023
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Microbial fuel cells (MFC) with 30% wet-proofed air cathodes have previously been optimized to have 4 diffusion layers (DLs) in order to limit oxygen transfer into the anode chamber and optimize performance. Newer MFC designs that allow close electrode spacing have a separator that can also reduce oxygen transfer into the anode chamber, and there are many types of carbon wet-proofed materials available. Additional analysis of conditions that optimize performance is therefore needed for separator-coupled MFCs in terms of the number of DLs and the percent of wet proofing used for the cathode. The number of DLs on a 50% wet-proofed carbon cloth cathode significantly affected MFC performance, with the maximum power density decreasing from 1427 to 855 mW/m(2) for 1-4 DLs. A commonly used cathode (30% wet-proofed, 4 DLs) produced a maximum power density (988 mW/m(2)) that was 31% less than that produced by the 50% wet-proofed cathode (1 DL). It was shown that the cathode performance with different materials and numbers of DLs was directly related to conditions that increased oxygen transfer. The coulombic efficiency (CE) was more affected by the current density than the oxygen transfer coefficient for the cathode. MFCs with the 50% wet-proofed cathode (2 DLs) had a CE of >84% (6.8 A/m(2)), which was substantially larger than that previously obtained using carbon cloth air-cathodes lacking separators. These results demonstrate that MFCs constructed with separators should have the minimum number of DLs that prevent water leakage and maximize oxygen transfer to the cathode. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:267 / 271
页数:5
相关论文
共 30 条
[1]   A mini-microbial fuel cell for voltage testing of exoelectrogenic bacteria [J].
Cao, Xiaoxin ;
Huang, Xia ;
Zhang, Xiaoyuan ;
Liang, Peng ;
Fan, Mingzhi .
FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING IN CHINA, 2009, 3 (03) :307-312
[2]   Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing [J].
Cheng, S ;
Liu, H ;
Logan, BE .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2006, 40 (07) :2426-2432
[3]   Increased performance of single-chamber microbial fuel cells using an improved cathode structure [J].
Cheng, S ;
Liu, H ;
Logan, BE .
ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (03) :489-494
[4]   Direct Biological Conversion of Electrical Current into Methane by Electromethanogenesis [J].
Cheng, Shaoan ;
Xing, Defeng ;
Call, Douglas F. ;
Logan, Bruce E. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2009, 43 (10) :3953-3958
[5]   Quantification of the Internal Resistance Distribution of Microbial Fuel Cells [J].
Fan, Yanzhen ;
Sharbrough, Evan ;
Liu, Hong .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (21) :8101-8107
[6]   Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration [J].
Fan, Yanzhen ;
Hu, Hongqiang ;
Liu, Hong .
JOURNAL OF POWER SOURCES, 2007, 171 (02) :348-354
[7]  
Gangjee A, 2009, ABSTR PAP AM CHEM S, V238
[8]   Selectivity versus Mobility: Separation of Anode and Cathode in Microbial Bioelectrochemical Systems [J].
Harnisch, Falk ;
Schroeder, Uwe .
CHEMSUSCHEM, 2009, 2 (10) :921-926
[9]   An upflow microbial fuel cell with an interior cathode: Assessment of the internal resistance by impedance Spectroscopy [J].
He, Zhen ;
Wagner, Norbert ;
Minteer, Shelley D. ;
Angenent, Largus T. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2006, 40 (17) :5212-5217
[10]   Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells [J].
Kim, Jung Rae ;
Cheng, Shaoan ;
Oh, Sang-Eun ;
Logan, Bruce E. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2007, 41 (03) :1004-1009