Finite 2-Geodesic Transitive Graphs of Prime Valency

被引:27
作者
Devillers, Alice [1 ]
Jin, Wei [2 ]
Li, Cai Heng [1 ]
Praeger, Cheryl E. [1 ]
机构
[1] Univ Western Australia, Sch Math & Stat, Ctr Math Symmetry & Computat, Crawley, WA 6009, Australia
[2] Jiangxi Univ Finance & Econ, Sch Stat, Res Ctr Appl Stat, Nanchang 330013, Jiangxi, Peoples R China
关键词
2-geodesic transitive graph; 2-arc transitive graph; cover;
D O I
10.1002/jgt.21835
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify noncomplete prime valency graphs satisfying the property that their automorphism group is transitive on both the set of arcs and the set of 2-geodesics. We prove that either is 2-arc transitive or the valency p satisfies p=1 (mod 4), and for each such prime there is a unique graph with this property: it is a nonbipartite antipodal double cover of the complete graph Kp+1 with automorphism group PSL(2,p)xZ2 and diameter 3.
引用
收藏
页码:18 / 27
页数:10
相关论文
共 19 条
[1]   2-ARC TRANSITIVE GRAPHS AND TWISTED WREATH-PRODUCTS [J].
BADDELEY, RW .
JOURNAL OF ALGEBRAIC COMBINATORICS, 1993, 2 (03) :215-237
[2]  
Biggs N., 1993, Algebraic Graph Theory
[3]  
Brouwer A.E., 1989, Distance-Regular Graphs
[4]  
Devillers A, 2013, ARS MATH CONTEMP, V6, P13
[5]  
Dixon J.D., 1996, Grad. Texts in Math., V163
[6]  
Godsil C.D., 2001, Algebraic Graph Theory
[7]   Antipodal distance transitive covers of complete graphs [J].
Godsil, CD ;
Liebler, RA ;
Praeger, CE .
EUROPEAN JOURNAL OF COMBINATORICS, 1998, 19 (04) :455-478
[8]  
Huppert B., 1982, FINITE GROUPS, VIII
[9]   ON FINITE AFFINE 2-ARC TRANSITIVE GRAPHS [J].
IVANOV, AA ;
PRAEGER, CE .
EUROPEAN JOURNAL OF COMBINATORICS, 1993, 14 (05) :421-444
[10]  
Jin W., FINITE 2 GEODE UNPUB