TiO2-B/Anatase Core-Shell Heterojunction Nanowires for Photocatalysis

被引:163
作者
Liu, Bin [1 ]
Khare, Ankur [1 ]
Aydil, Eray S. [1 ]
机构
[1] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
anatase; core-shell nanowires; photocatalysis; photocatalytic heterostructure; titanium dioxide; TiO2(B) phase; RUTILE TIO2 NANORODS; CARBON NANOTUBES; ANATASE; SURFACE; NANOCOMPOSITES; SEMICONDUCTOR; NANOPARTICLES; PARTICLE; TITANIA; PHASES;
D O I
10.1021/am201123u
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Fast separation and spatial control of electrons and holes after photogeneration is important in photocatalysis. Ideally, after photogeneration, electrons and holes must be segregated to different parts of the photo catalyst to take part in separate oxidation and reduction reactions. One way to achieve this is by building junctions into the catalyst with built-in chemical potential differences that tend to separate the electron and the hole into two different regions of the catalyst. In this work, we sought to accomplish this by controllably forming junctions between different phases of TiO2. A synthesis method has been developed to prepare TiO2-B core and anatase shell core shell nanowires. We control the anatase phase surface coverage on the TiO2-B core and show that the maximum photocatalytic activity is obtained when the solution containing the reactants can contact both the anatase and TiO2-B phases. The photocatalytic activity drops both with bare TiO2-B nanowires and with completely anatase covered TiO2-B nanowires. In contrast, nanowires partially covered with anatase phase gives the highest photocatalytic activity. The improved photocatalytic activity is attributed to the effective electron hole separation at the junction between the anatase and TiO2 B phases.
引用
收藏
页码:4444 / 4450
页数:7
相关论文
共 41 条
[1]   Linker-Free Modification of TiO2 Nanorods with PbSe Nanocrystals [J].
Acharya, Krishna P. ;
Alabi, Taiwo R. ;
Schmall, Nicholas ;
Hewa-Kasakarage, Nishshanka N. ;
Kirsanova, Maria ;
Nemchinov, Alexander ;
Khon, Elena ;
Zamkov, Mikhail .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (45) :19531-19535
[2]   PHOTOCATALYTIC HYDROGENATION OF CH3CCH WITH H2O ON SMALL-PARTICLE TIO2 - SIZE QUANTIZATION EFFECTS AND REACTION INTERMEDIATES [J].
ANPO, M ;
SHIMA, T ;
KODAMA, S ;
KUBOKAWA, Y .
JOURNAL OF PHYSICAL CHEMISTRY, 1987, 91 (16) :4305-4310
[3]   TiO2-B nanowires [J].
Armstrong, AR ;
Armstrong, G ;
Canales, J ;
Bruce, PG .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (17) :2286-2288
[4]   A plasmonic photocatalyst consisting of sliver nanoparticles embedded in titanium dioxide [J].
Awazu, Koichi ;
Fujimaki, Makoto ;
Rockstuhl, Carsten ;
Tominaga, Junji ;
Murakami, Hirotaka ;
Ohki, Yoshimichi ;
Yoshida, Naoya ;
Watanabe, Toshiya .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (05) :1676-1680
[5]   Synthesis of Coupled Semiconductor by Filling 1D TiO2 Nanotubes with CdS [J].
Banerjee, Subarna ;
Mohapatra, Susanta K. ;
Das, Prajna P. ;
Misra, Mano .
CHEMISTRY OF MATERIALS, 2008, 20 (21) :6784-6791
[6]   Photoinduced reactivity of titanium dioxide [J].
Carp, O ;
Huisman, CL ;
Reller, A .
PROGRESS IN SOLID STATE CHEMISTRY, 2004, 32 (1-2) :33-177
[7]   Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications [J].
Chen, Xiaobo ;
Mao, Samuel S. .
CHEMICAL REVIEWS, 2007, 107 (07) :2891-2959
[8]  
Fujishima A., 1972, NATURE, V106, P4428
[9]  
Fujishima A., 1999, TIO2 PHOTOCATALYSIS
[10]   ENVIRONMENTAL APPLICATIONS OF SEMICONDUCTOR PHOTOCATALYSIS [J].
HOFFMANN, MR ;
MARTIN, ST ;
CHOI, WY ;
BAHNEMANN, DW .
CHEMICAL REVIEWS, 1995, 95 (01) :69-96