ACCUMULATION OF COMPLEX EIGENVALUES OF AN INDEFINITE STURM-LIOUVILLE OPERATOR WITH A SHIFTED COULOMB POTENTIAL

被引:6
作者
Levitin, Michael [1 ]
Seri, Marcello [1 ]
机构
[1] Univ Reading, Dept Math & Stat, POB 220, Reading RG6 6AX, Berks, England
来源
OPERATORS AND MATRICES | 2016年 / 10卷 / 01期
基金
英国工程与自然科学研究理事会;
关键词
Linear operator pencils; non-self-adjoint operators; Sturm-Liouville problem; Coulomb potential; complex eigenvalues; Kummer functions; DIFFERENTIAL-OPERATORS; SIMILARITY PROBLEM; SGN X;
D O I
10.7153/oam-10-14
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a particular family of long-range potentials V, we prove that the eigenvalues of the indefinite Sturm-Liouville operator A = sign(x)(-Delta+V(x)) accumulate to zero asymptotically along specific curves in the complex plane. Additionally, we relate the asymptotics of complex eigenvalues to the two-term asymptotics of the eigenvalues of associated self-adjoint operators.
引用
收藏
页码:223 / 245
页数:23
相关论文
共 28 条
[1]  
[Anonymous], 2010, Handbook of Mathematical Functions
[2]  
Azizov TY., 1989, Linear operators in spaces with and indefinite metric
[3]   On the spectral theory of singular indefinite Sturm-Liouville operators [J].
Behrndt, Jussi .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 334 (02) :1439-1449
[4]   On the negative squares of indefinite Sturm-Liouville operators [J].
Behrndt, Jussi ;
Trunk, Carsten .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 238 (02) :491-519
[6]   Bounds on the non-real spectrum of differential operators with indefinite weights [J].
Behrndt, Jussi ;
Philipp, Friedrich ;
Trunk, Carsten .
MATHEMATISCHE ANNALEN, 2013, 357 (01) :185-213
[7]   Accumulation of complex eigenvalues of indefinite Sturm-Liouville operators [J].
Behrndt, Jussi ;
Katatbeh, Qutaibeh ;
Trunk, Carsten .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (24)
[8]   THE OPERATOR (SGN X)D(2)/DX(2) IS SIMILAR TO A SELF-ADJOINT OPERATOR IN L(2)(R) [J].
CURGUS, B ;
NAJMAN, B .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (04) :1125-1128
[9]  
CURGUS B, 1989, J DIFFER EQUATIONS, V79, P31
[10]   Spectra of a class of non-self-adjoint matrices [J].
Davies, E. B. ;
Levitin, Michael .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 448 :55-84