Graphene kirigami

被引:740
作者
Blees, Melina K. [1 ]
Barnard, Arthur W. [2 ]
Rose, Peter A. [1 ]
Roberts, Samantha P. [1 ]
McGill, Kathryn L. [1 ]
Huang, Pinshane Y. [2 ]
Ruyack, Alexander R. [3 ]
Kevek, Joshua W. [1 ]
Kobrin, Bryce [1 ]
Muller, David A. [2 ,4 ]
McEuen, Paul L. [1 ,4 ]
机构
[1] Cornell Univ, Lab Atom & Solid State Phys, Ithaca, NY 14853 USA
[2] Cornell Univ, Sch Appl & Engn Phys, Ithaca, NY 14853 USA
[3] Cornell Univ, Sch Elect & Comp Engn, Ithaca, NY 14853 USA
[4] Cornell Univ, Kavli Inst, Cornell Nanoscale Sci, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
MEMBRANES; FLUCTUATIONS; RIPPLES; SHEETS;
D O I
10.1038/nature14588
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
For centuries, practitioners of origami ('ori', fold; 'kami', paper) and kirigami ('kiru', cut) have fashioned sheets of paper into beautiful and complex three-dimensional structures. Both techniques are scalable, and scientists and engineers are adapting them to different two-dimensional starting materials to create structures from the macro-to the microscale(1,2). Here we show that graphene(3-6) is well suited for kirigami, allowing us to build robust microscale structures with tunable mechanical properties. The material parameter crucial for kirigami is the Foppl-von Karman number(7,8) gamma: an indication of the ratio between in-plane stiffness and out-of-plane bending stiffness, with high numbers corresponding to membranes that more easily bend and crumple than they stretch and shear. To determine gamma, we measure the bending stiffness of graphene monolayers that are 10-100 micrometres in size and obtain a value that is thousands of times higher than the predicted atomic-scale bending stiffness. Interferometric imaging attributes this finding to ripples in the membrane(9-13) that stiffen the graphene sheets considerably, to the extent that gamma is comparable to that of a standard piece of paper. We may therefore apply ideas from kirigami to graphene sheets to build mechanical metamaterials such as stretchable electrodes, springs, and hinges. These results establish graphene kirigami as a simple yet powerful and customizable approach for fashioning one-atom-thick graphene sheets into resilient and movable parts with microscale dimensions.
引用
收藏
页码:204 / +
页数:9
相关论文
共 27 条
[1]   FLUCTUATIONS OF SOLID MEMBRANES [J].
ARONOVITZ, JA ;
LUBENSKY, TC .
PHYSICAL REVIEW LETTERS, 1988, 60 (25) :2634-2637
[2]   Macroscopic graphene membranes and their extraordinary stiffness [J].
Booth, Tim J. ;
Blake, Peter ;
Nair, Rahul R. ;
Jiang, Da ;
Hill, Ernie W. ;
Bangert, Ursel ;
Bleloch, Andrew ;
Gass, Mhairi ;
Novoselov, Kostya S. ;
Katsnelson, M. I. ;
Geim, A. K. .
NANO LETTERS, 2008, 8 (08) :2442-2446
[3]   Thermal fluctuations of free-standing graphene [J].
Braghin, F. L. ;
Hasselmann, N. .
PHYSICAL REVIEW B, 2010, 82 (03)
[4]   Electromechanical resonators from graphene sheets [J].
Bunch, J. Scott ;
van der Zande, Arend M. ;
Verbridge, Scott S. ;
Frank, Ian W. ;
Tanenbaum, David M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
SCIENCE, 2007, 315 (5811) :490-493
[5]   Graphene-based materials in electrochemistry [J].
Chen, Da ;
Tang, Longhua ;
Li, Jinghong .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (08) :3157-3180
[6]   Intrinsic ripples in graphene [J].
Fasolino, A. ;
Los, J. H. ;
Katsnelson, M. I. .
NATURE MATERIALS, 2007, 6 (11) :858-861
[7]  
Foppl A., 1905, VORLESUNGEN TECHNISC
[8]   Graphene bubbles with controllable curvature [J].
Georgiou, T. ;
Britnell, L. ;
Blake, P. ;
Gorbachev, R. V. ;
Gholinia, A. ;
Geim, A. K. ;
Casiraghi, C. ;
Novoselov, K. S. .
APPLIED PHYSICS LETTERS, 2011, 99 (09)
[9]   Programmable matter by folding [J].
Hawkes, E. ;
An, B. ;
Benbernou, N. M. ;
Tanaka, H. ;
Kim, S. ;
Demaine, E. D. ;
Rus, D. ;
Wood, R. J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (28) :12441-12445
[10]   Thermal excitations of warped membranes [J].
Kosmrlj, Andrej ;
Nelson, David R. .
PHYSICAL REVIEW E, 2014, 89 (02)