Stability and bifurcation of a delayed generalized fractional-order prey-predator model with interspecific competition

被引:157
作者
Wang, Zhen [1 ]
Xie, Yingkang [1 ]
Lu, Junwei [2 ]
Li, Yuxia [3 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
[2] Nanjing Normal Univ, Sch Elect & Automat Engn, Nanjing 210023, Jiangsu, Peoples R China
[3] Shandong Univ Sci & Technol, Coll Elect Engn & Automat, Qingdao 266590, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional-order system; Time delay; Prey-predator model; Hopf bifurcation; Stability; DIFFERENTIAL-EQUATIONS; HOPF-BIFURCATION; GLOBAL DYNAMICS; SIR MODEL; SYSTEM;
D O I
10.1016/j.amc.2018.11.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present paper considers a delayed generalized fractional-order prey-predator model with interspecific competition. The existence of the nontrivial positive equilibrium is discussed, and some sufficient conditions for global asymptotic stability of the equilibrium are developed. Meanwhile, the existence of Hopf bifurcation is discussed by choosing time delay as the bifurcation parameter. Finally, some numerical simulations are carried out to support the analytical results. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:360 / 369
页数:10
相关论文
共 50 条
[11]   Fractional differential equations with a constant delay: Stability and asymptotics of solutions [J].
Cermak, Jan ;
Dosla, Zuzana ;
Kisela, Tomas .
APPLIED MATHEMATICS AND COMPUTATION, 2017, 298 :336-350
[12]   A Block-Based Regularized Approach for Image Interpolation [J].
Chen, Li ;
Huang, Xiaotong ;
Tian, Jing .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
[13]   Stability of fractional-order prey-predator system with time-delay and Monod-Haldane functional response [J].
Chinnathambi, Rajivganthi ;
Rihan, Fathalla A. .
NONLINEAR DYNAMICS, 2018, 92 (04) :1637-1648
[14]   Stability analysis of Caputo fractional-order nonlinear systems revisited [J].
Delavari, Hadi ;
Baleanu, Dumitru ;
Sadati, Jalil .
NONLINEAR DYNAMICS, 2012, 67 (04) :2433-2439
[15]  
Deng WH, 2007, NONLINEAR DYNAM, V48, P409, DOI [10.1007/s11071-006-9094-0, 10.1007/s11071 -006-9094-0]
[16]  
Edelman M., 2014, FRACTIONAL MAPS MAPS
[17]   On the Fractional-Order Logistic Equation with Two Different Delays [J].
El-Sayed, Ahmed M. A. ;
El-Saka, Hala A. A. ;
El-Maghrabi, Esam M. .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2011, 66 (3-4) :223-227
[18]   Nonlinear dynamics and chaos in a simplified memristor-based fractional-order neural network with discontinuous memductance function [J].
Fan, Yingjie ;
Huang, Xia ;
Wang, Zhen ;
Li, Yuxia .
NONLINEAR DYNAMICS, 2018, 93 (02) :611-627
[19]   Bifurcation and chaos in a ratio-dependent predator-prey system with time delay [J].
Gan, Qintao ;
Xu, Rui ;
Yang, Pinghua .
CHAOS SOLITONS & FRACTALS, 2009, 39 (04) :1883-1895
[20]  
Ghasemabadi A., 2017, NONLINEAR DYNAM, V5, P1