Stability and bifurcation of a delayed generalized fractional-order prey-predator model with interspecific competition

被引:157
作者
Wang, Zhen [1 ]
Xie, Yingkang [1 ]
Lu, Junwei [2 ]
Li, Yuxia [3 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
[2] Nanjing Normal Univ, Sch Elect & Automat Engn, Nanjing 210023, Jiangsu, Peoples R China
[3] Shandong Univ Sci & Technol, Coll Elect Engn & Automat, Qingdao 266590, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional-order system; Time delay; Prey-predator model; Hopf bifurcation; Stability; DIFFERENTIAL-EQUATIONS; HOPF-BIFURCATION; GLOBAL DYNAMICS; SIR MODEL; SYSTEM;
D O I
10.1016/j.amc.2018.11.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present paper considers a delayed generalized fractional-order prey-predator model with interspecific competition. The existence of the nontrivial positive equilibrium is discussed, and some sufficient conditions for global asymptotic stability of the equilibrium are developed. Meanwhile, the existence of Hopf bifurcation is discussed by choosing time delay as the bifurcation parameter. Finally, some numerical simulations are carried out to support the analytical results. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:360 / 369
页数:10
相关论文
共 50 条
[1]   Average conditions for global asymptotic stability in a nonautonomous Lotka-Volterra system [J].
Ahmad, S ;
Lazer, AC .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 40 (1-8) :37-49
[2]   Average growth and total permanence in a competitive Lotka-Volterra System [J].
Ahmad, Shair ;
Lazer, Alan C. .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2006, 185 (Suppl 5) :S47-S67
[3]   Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models [J].
Ahmed, E. ;
El-Sayed, A. M. A. ;
El-Saka, H. A. A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 325 (01) :542-553
[4]  
Al-Darabsah I., 2017, DISCRETE CONT DYN-B, V21, P737
[5]  
[Anonymous], 1956, ELEMENTS MATH BIOL
[6]  
Bagley R. L., 1989, P DAMP, V1, P431
[7]   On the existence of blow up solutions for a class of fractional differential equations [J].
Bai, Zhanbing ;
Chen, YangQuan ;
Lian, Hairong ;
Sun, Sujing .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (04) :1175-1187
[8]   State estimation of fractional-order delayed memristive neural networks [J].
Bao, Haibo ;
Cao, Jinde ;
Kurths, Juergen .
NONLINEAR DYNAMICS, 2018, 94 (02) :1215-1225
[9]   Stability and bifurcation analysis of a generalized scalar delay differential equation [J].
Bhalekar, Sachin .
CHAOS, 2016, 26 (08)
[10]   The stability and Hopf bifurcation for a predator-prey system with time delay [J].
Celik, Canan .
CHAOS SOLITONS & FRACTALS, 2008, 37 (01) :87-99