Minimizing sevoflurane wastage by sensible use of automated gas control technology in the flow-i workstation: an economic and ecological assessment

被引:14
作者
Kalmar, Alain F. [1 ,2 ]
Van der Vekens, Nicky [3 ]
De Rydt, Frederic [3 ]
Allaert, Silvie [3 ]
Van De Velde, Marc [4 ,5 ]
Mulier, Jan [1 ,2 ,6 ]
机构
[1] AZ Sint Jan Brugge Oostende, Dept Anesthesiol Reanimat & Intens Care, Brugge, Belgium
[2] Univ Ghent, Dept Anesthesia, Ghent, Belgium
[3] Maria Middelares Hosp, Dept Anesthesia & Crit Care Med, Ghent, Belgium
[4] KULeuven, Dept Cardiovasc Sci, Leuven, Belgium
[5] UZLeuven, Dept Anesthesiol, Leuven, Belgium
[6] Univ Leuven, KULeuven, Dept Anesthesiol, Leuven, Belgium
关键词
Volatile anaesthetics; Pollution; Flow-i; Automated gas control; CLIMATE-CHANGE; ANESTHESIA; ISOFLURANE;
D O I
10.1007/s10877-021-00803-z
中图分类号
R614 [麻醉学];
学科分类号
100217 ;
摘要
Both ecological and economic considerations dictate minimising wastage of volatile anaesthetics. To reconcile apparent opposing stakes between ecological/economical concerns and stability of anaesthetic delivery, new workstations feature automated software that continually optimizes the FGF to reliably obtain the requested gas mixture with minimal volatile anaesthetic waste. The aim of this study is to analyse the kinetics and consumption pattern of different approaches of sevoflurane delivery with the same 2% end-tidal goal in all patients. The consumption patterns of sevoflurane of a Flow-i were retrospectively studied in cases with a target end-tidal sevoflurane concentration (Et-sevo) of 2%. For each setting, 25 cases were included in the analysis. In Automatic Gas Control (AGC) regulation with software version V4.04, a speed setting 6 was observed; in AGC software version V4.07, speed settings 2, 4, 6 and 8 were observed, as well as a group where a minimal FGF was manually pursued and a group with a fixed 2 L/min FGF. In 45 min, an average of 14.5 mL was consumed in the 2L-FGF group, 5.0 mL in the minimal-manual group, 7.1 mL in the AGC4.04 group and 6.3 mL in the AGC4.07 group. Faster speed AGC-settings resulted in higher consumption, from 6.0 mL in speed 2 to 7.3 mL in speed 8. The Et-sevo target was acquired fastest in the 2L-FGF group and the Et-sevo was more stable in the AGC groups and the 2L-FGF groups. In all AGC groups, the consumption in the first 8 min was significantly higher than in the minimal flow group, but then decreased to a comparable rate. The more recent AGC4.07 algorithm was more efficient than the older AGC4.04 algorithm. This study indicates that the AGC technology permits very significant economic and ecological benefits, combined with excellent stability and convenience, over conventional FGF settings and should be favoured. While manually regulated minimal flow is still slightly more economical compared to the automated algorithm, this comes with a cost of lower precision of the Et-sevo. Further optimization of the AGC algorithms, particularly in the early wash-in period seems feasible. In AGC mode, lower speed settings result in significantly lower consumption of sevoflurane. Routine clinical practice using what historically is called "low flow anaesthesia" (e.g. 2 L/min FGF) should be abandoned, and all anaesthesia machines should be upgraded as soon as possible with automatic delivery technology to minimize atmospheric pollution with volatile anaesthetics.
引用
收藏
页码:1601 / 1610
页数:10
相关论文
共 24 条
[1]   Brief review: Theory and practice of minimal fresh gas flow anesthesia [J].
Brattwall, Metha ;
Warren-Stomberg, Margareta ;
Hesselvik, Fredrik ;
Jakobsson, Jan .
CANADIAN JOURNAL OF ANESTHESIA-JOURNAL CANADIEN D ANESTHESIE, 2012, 59 (08) :785-797
[2]   The mortality cost of carbon [J].
Bressler, R. Daniel .
NATURE COMMUNICATIONS, 2021, 12 (01)
[3]   Automated gas control with the Maquet FLOW-i [J].
Carette, Rik ;
De Wolf, Andre M. ;
Hendrickx, Jan F. A. .
JOURNAL OF CLINICAL MONITORING AND COMPUTING, 2016, 30 (03) :341-346
[4]   Anaesthetic gases, climate change, and sustainable practice [J].
Charlesworth, Michael ;
Swinton, Frank .
LANCET PLANETARY HEALTH, 2017, 1 (06) :E216-E217
[5]  
Climate change, 2007, WORK GROUP 3 MIT CLI
[6]   Desflurane consumption during automated closed-circuit delivery is higher than when a conventional anesthesia machine is used with a simple vaporizer-O2-N2O fresh gas flow sequence [J].
De Cooman S. ;
De Mey N. ;
Dewulf B.B.C. ;
Carette R. ;
Deloof T. ;
Sosnowski M. ;
De Wolf A.M. ;
Hendrickx J.F.A. .
BMC Anesthesiology, 8 (1)
[7]   Desflurane usage during anesthesia with and without N2O using FLOW-i Automatic Gas Control with three different wash-in speeds [J].
De Medts, Robrecht ;
Carette, Rik ;
De Wolf, Andre M. ;
Hendrickx, Jan F. A. .
JOURNAL OF CLINICAL MONITORING AND COMPUTING, 2018, 32 (04) :763-769
[8]   Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses [J].
Faul, Franz ;
Erdfelder, Edgar ;
Buchner, Axel ;
Lang, Albert-Georg .
BEHAVIOR RESEARCH METHODS, 2009, 41 (04) :1149-1160
[9]   Carbon Dioxide Absorption During Inhalation Anesthesia: A Modern Practice [J].
Feldman, Jeffrey M. ;
Hendrickx, Jan ;
Kennedy, R. Ross .
ANESTHESIA AND ANALGESIA, 2021, 132 (04) :993-1002
[10]   Performance of an active inspired hypoxic guard [J].
Ghijselings, Idris E. ;
De Cooman, Sofie ;
Carette, Rik ;
Peyton, Philip J. ;
De Wolf, Andre M. ;
Hendrickx, Jan F. A. .
JOURNAL OF CLINICAL MONITORING AND COMPUTING, 2016, 30 (01) :63-68