The late embryogenesis abundant gene family in tea plant (Camellia sinensis): Genome-wide characterization and expression analysis in response to cold and dehydration stress

被引:50
|
作者
Wang, Weidong [1 ]
Gao, Tong [1 ]
Chen, Jiangfei [1 ]
Yang, Jiankun [1 ]
Huang, Huiyu [1 ]
Yu, Youben [1 ]
机构
[1] Northwest A&F Univ, Coll Hort, Yangling 712100, Shaanxi, Peoples R China
基金
中国博士后科学基金;
关键词
Cold stress; Dehydration stress; Expression pattern; LEA; Tea plant; L; O; KUNTZE; LEA PROTEIN; LOW-TEMPERATURE; IDENTIFICATION; TOLERANCE; DROUGHT; OVEREXPRESSION; PCR;
D O I
10.1016/j.plaphy.2018.12.009
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Late embryogenesis abundant (LEA) proteins are a large and highly diverse family of polypeptides that play important roles in plant growth, development and stress responses. At present, LEA gene families have been identified and systematically characterized in many plant species. However, the LEA gene family in tea plant has not been revealed, and the biological functions of the members of this family remain unknown. In this study, 33 CsLEA genes were identified from tea plant via a genome-wide study, and they were clustered into seven groups according to analyses of their phylogenetic relationships, gene structures and protein conserved motifs. In addition, expression analysis revealed that the CsLEA genes were specifically expressed in one or more tissues and significantly induced under cold and dehydration stresses, implying that CsLEA genes play important roles in tea plant growth, development and response to cold and dehydration stresses. Furthermore, a potential transcriptional regulatory network, including DREB/CBF, MYB, bZIP, bHLH, BPC and other transcription factors, is directly associated with the expression of CsLEA genes, which may be ubiquitous and important in the above mentioned processes. This study could help to increase our understanding of CsLEA proteins and their contributions to stress tolerance in tea plant.
引用
收藏
页码:277 / 286
页数:10
相关论文
共 50 条
  • [1] Genome-Wide Analysis of the TCP Gene Family and Their Expression Pattern Analysis in Tea Plant (Camellia sinensis)
    Shang, Xiaowen
    Han, Zhaolan
    Zhang, Dayan
    Wang, Ya
    Qin, Hao
    Zou, Zhongwei
    Zhou, Lin
    Zhu, Xujun
    Fang, Wanping
    Ma, Yuanchun
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [2] Genome-Wide Identification, Characterization, and Expression Profiling of the Glutaredoxin Gene Family in Tea Plant (Camellia sinensis)
    Jiang, Dong
    Yang, Wenhai
    Pi, Jianhui
    Yang, Guoqun
    Luo, Yong
    Du, Shenxiu
    Li, Ning
    Huang, Li-Jun
    FORESTS, 2023, 14 (08):
  • [3] Genome-wide identification and expression characterization of the GH3 gene family of tea plant (Camellia sinensis)
    Wang, Xinge
    Jia, Chunyu
    An, Lishuang
    Zeng, Jiangyan
    Ren, Aixia
    Han, Xin
    Wang, Yiqing
    Wu, Shuang
    BMC GENOMICS, 2024, 25 (01):
  • [4] Genome-Wide Analysis and Expression Profiling of YUCCA Gene Family in Developmental and Environmental Stress Conditions in Tea Plant (Camellia sinensis)
    Zhang, Liping
    Jin, Shan
    Bai, Peixian
    Ge, Shibei
    Yan, Peng
    Li, Zhengzhen
    Zhang, Lan
    Han, Wenyan
    Zeng, Jianming
    Li, Xin
    FORESTS, 2023, 14 (11):
  • [5] Genome-Wide Identification and Expression Analysis of the NRAMP Family Genes in Tea Plant (Camellia sinensis)
    Li, Jinqiu
    Duan, Yu
    Han, Zhaolan
    Shang, Xiaowen
    Zhang, Kexin
    Zou, Zhongwei
    Ma, Yuanchun
    Li, Fang
    Fang, Wanping
    Zhu, Xujun
    PLANTS-BASEL, 2021, 10 (06):
  • [6] Genome-wide identification and expression analysis of the Dof gene family under drought stress in tea (Camellia sinensis)
    Yu, Qian
    Li, Chen
    Zhang, Jiucheng
    Tian, Yueyue
    Wang, Hanyue
    Zhang, Yue
    Zhang, Zhengqun
    Xiang, Qinzeng
    Han, Xiaoyang
    Zhang, Lixia
    PEERJ, 2020, 8
  • [7] Genome-wide identification, expression profiling, and protein interaction analysis of the CCoAOMT gene family in the tea plant (Camellia sinensis)
    Yiqing Wang
    Tao Wang
    Siyu Qi
    Jiamin Zhao
    Jiumei Kong
    Zhihui Xue
    Weijiang Sun
    Wen Zeng
    BMC Genomics, 25
  • [8] Genome-wide identification, expression profiling, and protein interaction analysis of the CCoAOMT gene family in the tea plant (Camellia sinensis)
    Wang, Yiqing
    Wang, Tao
    Qi, Siyu
    Zhao, Jiamin
    Kong, Jiumei
    Xue, Zhihui
    Sun, Weijiang
    Zeng, Wen
    BMC GENOMICS, 2024, 25 (01)
  • [9] Genome-wide identification, characterization and expression analysis of the expansin gene family under drought stress in tea (Camellia sinensis L.)
    Bordoloi, Kuntala Sarma
    Dihingia, Pallabika
    Krishnatreya, Debasish B.
    Agarwala, Niraj
    PLANT SCIENCE TODAY, 2021, 8 (01): : 32 - 44
  • [10] Genome-wide identification and expression analysis of GRAS family transcription factors in tea plant (Camellia sinensis)
    Yong-Xin Wang
    Zhi-Wei Liu
    Zhi-Jun Wu
    Hui Li
    Wen-Li Wang
    Xin Cui
    Jing Zhuang
    Scientific Reports, 8