Traveling salesman problem with a center

被引:3
作者
Lipowski, A [1 ]
Lipowska, D
机构
[1] Adam Mickiewicz Univ, Fac Phys, PL-61614 Poznan, Poland
[2] Adam Mickiewicz Univ, Inst Linguist, PL-60371 Poznan, Poland
来源
PHYSICAL REVIEW E | 2005年 / 71卷 / 06期
关键词
D O I
10.1103/PhysRevE.71.067701
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study a traveling salesman problem where the path is optimized with a cost function that includes its length L as well as a certain measure C of its distance from the geometrical center of the graph. Using simulated annealing (SA) we show that such a problem has a transition point that separates two phases differing in the scaling behavior of L and C, in efficiency of SA, and in the shape of minimal paths.
引用
收藏
页数:4
相关论文
共 17 条
[1]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theoryof NP-Completeness
[2]  
[Anonymous], P CAMB PHILO SOC, DOI DOI 10.1017/S0305004100034095
[3]   Optimization of the time-dependent traveling salesman problem with Monte Carlo methods [J].
Bentner, J ;
Bauer, G ;
Obermair, GM ;
Morgenstern, I ;
Schneider, J .
PHYSICAL REVIEW E, 2001, 64 (03) :8-367018
[4]   Nature's way of optimizing [J].
Boettcher, S ;
Percus, A .
ARTIFICIAL INTELLIGENCE, 2000, 119 (1-2) :275-286
[5]  
Hayes B, 1997, AM SCI, V85, P108
[6]   Phase transitions and the search problem [J].
Hogg, T ;
Huberman, BA ;
Williams, CP .
ARTIFICIAL INTELLIGENCE, 1996, 81 (1-2) :1-15
[7]  
JOHNSON DS, 1990, LECT NOTES COMPUTER, V443
[8]   OPTIMIZATION BY SIMULATED ANNEALING [J].
KIRKPATRICK, S ;
GELATT, CD ;
VECCHI, MP .
SCIENCE, 1983, 220 (4598) :671-680
[9]   From massively parallel algorithms and fluctuating time horizons to nonequilibrium surface growth [J].
Korniss, G ;
Toroczkai, Z ;
Novotny, MA ;
Rikvold, PA .
PHYSICAL REVIEW LETTERS, 2000, 84 (06) :1351-1354
[10]  
Koza J.R., 1992, GENETIC PROGRAMMING