A smooth penalty approach and a nonlinear multigrid algorithm for elliptic MPECs

被引:28
作者
Hintermueller, M. [1 ,2 ]
Kopacka, I. [2 ]
机构
[1] Humboldt Univ, Dept Math, D-10099 Berlin, Germany
[2] Karl Franzens Univ Graz, Dept Math & Sci Comp, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
Constrained optimal control; Elliptic variational inequality; MPEC; Mathematical programs with complementarity constraints; C-stationarity; Nonlinear multigrid; MATHEMATICAL PROGRAMS; COMPLEMENTARITY CONSTRAINTS; VARIATIONAL-INEQUALITIES; OPTIMALITY CONDITIONS; STATIONARITY; SCHEME;
D O I
10.1007/s10589-009-9307-9
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
An optimal control problem governed by an elliptic variational inequality of the first kind and bilateral control constraints is studied. A smooth penalization technique for the variational inequality is applied and convergence of stationary points of the subproblems to an E-almost C-stationary point of the limit problem is shown. The subproblems are solved using a full approximation multigrid scheme (FAS) and alternatively a multigrid method of the second kind for which a convergence result is given. An overall algorithmic concept is provided and its performance is discussed by means of examples.
引用
收藏
页码:111 / 145
页数:35
相关论文
共 36 条
[1]  
[Anonymous], 1996, MATH PROGRAMS EQUILI, DOI DOI 10.1017/CBO9780511983658
[2]  
[Anonymous], 1985, MONOGRAPHS STUDIES M
[3]  
[Anonymous], 2000, CLASSICS APPL MATH
[4]  
[Anonymous], 2005, Optimale Steuerung partieller Differentialgleichungen: Theorie, Verfahren und Anwendungen
[5]  
Barbu V., 1984, OPTIMAL CONTROL VARI, V100, DOI DOI 10.1007/BF01442167
[6]   Use of augmented Lagrangian methods for the optimal control of obstacle problems [J].
Bergounioux, M .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1997, 95 (01) :101-126
[7]  
Bergounioux M, 1997, APPL MATH OPT, V36, P147
[8]   Optimal control of obstacle problems: Existence of Lagrange multipliers [J].
Bergounioux, M ;
Mignot, F .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2000, 5 :45-70
[9]   Optimal control of problems governed by abstract elliptic variational inequalities with state constraints [J].
Bergounioux, M .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1998, 36 (01) :273-289
[10]  
Bergounioux M., 1998, J Convex Anal, V5, P329