Cu-Ni composition gradient for the catalytic synthesis of vertically aligned carbon nanofibers

被引:39
作者
Klein, KL
Melechko, AV
Rack, PD
Fowlkes, JD
Meyer, HM
Simpson, ML
机构
[1] Oak Ridge Natl Lab, Mol Scale Engn & Nanoscale Technol Res Grp, Oak Ridge, TN 37831 USA
[2] Oak Ridge Natl Lab, Microscopy Microanal & Microstruct Grp, Div Met & Ceram, Oak Ridge, TN 37831 USA
关键词
carbon nano-fibers; chemical vapor deposition; plasma deposition; electron microscopy; catalytic properties;
D O I
10.1016/j.carbon.2005.02.027
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The influence of catalyst alloy composition on the growth of vertically aligned carbon nanofibers was studied using Cu-Ni thin films. Metals were co-sputtered onto a substrate to form a thin film alloy with a wide compositional gradient, as determined by Auger analysis. Carbon nanofibers were then grown from the gradient catalyst film by plasma enhanced chemical vapor deposition. The alloy composition produced substantial differences in the resulting nanofibers, which varied from branched structures at 81%Ni-19%Cu to high aspect ratio nanocones at 80%Cu-20%Ni. Electron microscopy and spectroscopy techniques also revealed segregation of the initial alloy catalyst particles at certain concentrations. (C) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1857 / 1863
页数:7
相关论文
共 32 条
[11]   Surface morphology and field emission characteristics of carbon nanofiber films grown by chemical vapor deposition on alloy catalyst [J].
Kamada, K ;
Ikuno, T ;
Takahashi, S ;
Oyama, T ;
Yamamoto, T ;
Kamizono, M ;
Ohkura, S ;
Honda, S ;
Katayama, M ;
Hirao, T ;
Oura, K .
APPLIED SURFACE SCIENCE, 2003, 212 :383-387
[12]   Thin film metallic catalyst coatings for the growth of multiwalled carbon nanotubes by pyrolysis of xylene [J].
Kichambare, PD ;
Qian, D ;
Dickey, EC ;
Grimes, CA .
CARBON, 2002, 40 (11) :1903-1909
[13]   THE INTERACTION OF HYDROCARBONS WITH COPPER NICKEL AND NICKEL IN THE FORMATION OF CARBON FILAMENTS [J].
KIM, MS ;
RODRIGUEZ, NM ;
BAKER, RTK .
JOURNAL OF CATALYSIS, 1991, 131 (01) :60-73
[14]   Nanoelectronics - Growing Y-junction carbon nanotubes [J].
Li, J ;
Papadopoulos, C ;
Xu, J .
NATURE, 1999, 402 (6759) :253-254
[15]   Straight carbon nanotube Y junctions [J].
Li, WZ ;
Wen, JG ;
Ren, ZF .
APPLIED PHYSICS LETTERS, 2001, 79 (12) :1879-1881
[16]   Tracking gene expression after DNA delivery using spatially indexed nanofiber Arrays [J].
McKnight, TE ;
Melechko, AV ;
Hensley, DK ;
Mann, DGJ ;
Griffin, GD ;
Simpson, ML .
NANO LETTERS, 2004, 4 (07) :1213-1219
[17]   Microarrays of vertically-aligned carbon nanofiber electrodes in an open fluidic channel [J].
McKnight, TE ;
Melechko, AV ;
Austin, DW ;
Sims, T ;
Guillorn, MA ;
Simpson, ML .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (22) :7115-7125
[18]   Intracellular integration of synthetic nanostructures with viable cells for controlled biochemical manipulation [J].
McKnight, TE ;
Melechko, AV ;
Griffin, GD ;
Guillorn, MA ;
Merkulov, VI ;
Serna, F ;
Hensley, DK ;
Doktycz, MJ ;
Lowndes, DH ;
Simpson, ML .
NANOTECHNOLOGY, 2003, 14 (05) :551-556
[19]   Vertically aligned carbon nanofibers as sacrificial templates for nanofluidic structures [J].
Melechko, AV ;
McKnight, TE ;
Guillorn, MA ;
Merkulov, VI ;
Ilic, B ;
Doktycz, MJ ;
Lowndes, DH ;
Simpson, ML .
APPLIED PHYSICS LETTERS, 2003, 82 (06) :976-978
[20]   Patterned growth of individual and multiple vertically aligned carbon nanofibers [J].
Merkulov, VI ;
Lowndes, DH ;
Wei, YY ;
Eres, G ;
Voelkl, E .
APPLIED PHYSICS LETTERS, 2000, 76 (24) :3555-3557