Strong Comparison Principle for the Fractional p-Laplacian and Applications to Starshaped Rings

被引:30
作者
Jarohs, Sven [1 ]
机构
[1] Goethe Univ, Frankfurt, Germany
关键词
Fractional p-Laplacian; Strong Comparison Principle; Starshaped Superlevel Sets;
D O I
10.1515/ans-2017-6039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the following, we show the strong comparison principle for the fractional p-Laplacian, i.e. we analyze {(-Delta)(p)(s)v + q(x)vertical bar v vertical bar(p-2) v >= 0 in D, (-Delta(s)(p)w + q(x)vertical bar w vertical bar(p-2) w <= 0 in D, v >= w in R-N, where s is an element of (0, 1), p > 1, D subset of R-N is an open set, and q is an element of L-infinity (R-N) is a nonnegative function. Under suitable conditions on s, p and some regularity assumptions on v, w, we show that either v w in R-N or v > w in D. Moreover, we apply this result to analyze the geometry of nonnegative solutions in starshaped rings and in the half space.
引用
收藏
页码:691 / 704
页数:14
相关论文
共 18 条
[1]  
[Anonymous], 1985, MONOGR STUD MATH
[2]  
Bucur C, 2016, LECT NOTES UNIONE MA, V20, P1, DOI 10.1007/978-3-319-28739-3
[3]   A direct method of moving planes for the fractional Laplacian [J].
Chen, Wenxiong ;
Li, Congming ;
Li, Yan .
ADVANCES IN MATHEMATICS, 2017, 308 :404-437
[4]   Maximum principles for a fully nonlinear fractional order equation and symmetry of solutions [J].
Chen, Wenxiong ;
Li, Congming ;
Li, Guanfeng .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (02)
[5]   A Hopf's lemma and a strong minimum principle for the fractional p-Laplacian [J].
Del Pezzo, Leandro M. ;
Quaas, Alexander .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (01) :765-778
[6]   Local behavior of fractional p-minimizers [J].
Di Castro, Agnese ;
Kuusi, Tuomo ;
Palatucci, Giampiero .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (05) :1279-1299
[7]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[8]   Monotonicity and nonexistence results for some fractional elliptic problems in the half-space [J].
Fall, Mouhamed Moustapha ;
Weth, Tobias .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2016, 18 (01)
[9]   OVERDETERMINED PROBLEMS WITH FRACTIONAL LAPLACIAN [J].
Fall, Mouhamed Moustapha ;
Jarohs, Sven .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2015, 21 (04) :924-938
[10]   Global Holder regularity for the fractional p-Laplacian [J].
Iannizzotto, Antonio ;
Mosconi, Sunra ;
Squassina, Marco .
REVISTA MATEMATICA IBEROAMERICANA, 2016, 32 (04) :1353-1392