Phase synchronization of coupled bursting neurons and the generalized Kuramoto model

被引:54
作者
Ferrari, F. A. S. [1 ]
Viana, R. L. [1 ]
Lopes, S. R. [1 ]
Stoop, R. [2 ,3 ]
机构
[1] Univ Fed Parana, Dept Phys, BR-81531990 Curitiba, Parana, Brazil
[2] Univ Zurich, Inst Neuroinformat, CH-8057 Zurich, Switzerland
[3] ETH, CH-8057 Zurich, Switzerland
关键词
Bursting neurons; Synchronization; Complex networks; Kuramoto model; Neuronal networks; Rulkov model; DEEP BRAIN-STIMULATION; HODGKIN-HUXLEY MODEL; SUBTHALAMIC NUCLEUS; PARKINSONS-DISEASE; MOVEMENT-DISORDERS; OSCILLATIONS; NETWORKS; DYNAMICS; PATTERNS; REGULARIZATION;
D O I
10.1016/j.neunet.2015.03.003
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Bursting neurons fire rapid sequences of action potential spikes followed by a quiescent period. The basic dynamical mechanism of bursting is the slow currents that modulate a fast spiking activity caused by rapid ionic currents. Minimal models of bursting neurons must include both effects. We considered one of these models and its relation with a generalized Kuramoto model, thanks to the definition of a geometrical phase for bursting and a corresponding frequency. We considered neuronal networks with different connection topologies and investigated the transition from a non-synchronized to a partially phase-synchronized state as the coupling strength is varied. The numerically determined critical coupling strength value for this transition to occur is compared with theoretical results valid for the generalized Kuramoto model. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:107 / 118
页数:12
相关论文
共 82 条
[1]   The Kuramoto model:: A simple paradigm for synchronization phenomena [J].
Acebrón, JA ;
Bonilla, LL ;
Vicente, CJP ;
Ritort, F ;
Spigler, R .
REVIEWS OF MODERN PHYSICS, 2005, 77 (01) :137-185
[2]  
Albanese Alberto, 2011, Front Neurol, V2, P33, DOI 10.3389/fneur.2011.00033
[3]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[4]   Multiple-time-scale framework for understanding the progression of Parkinson's disease [J].
Andres, D. S. ;
Gomez, F. ;
Ferrari, F. A. S. ;
Cerquetti, D. ;
Merello, M. ;
Viana, R. ;
Stoop, R. .
PHYSICAL REVIEW E, 2014, 90 (06)
[5]  
Arenas A, 2008, LECT NOTES COMPUT SC, V5151, P9
[6]   Synchronization in complex networks [J].
Arenas, Alex ;
Diaz-Guilera, Albert ;
Kurths, Jurgen ;
Moreno, Yamir ;
Zhou, Changsong .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03) :93-153
[7]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[8]   Phase synchronization of bursting neurons in clustered small-world networks [J].
Batista, C. A. S. ;
Lameu, E. L. ;
Batista, A. M. ;
Lopes, S. R. ;
Pereira, T. ;
Zamora-Lopez, G. ;
Kurths, J. ;
Viana, R. L. .
PHYSICAL REVIEW E, 2012, 86 (01)
[9]   Delayed feedback control of bursting synchronization in a scale-free neuronal network [J].
Batista, C. A. S. ;
Lopes, S. R. ;
Viana, R. L. ;
Batista, A. M. .
NEURAL NETWORKS, 2010, 23 (01) :114-124
[10]   Bursting synchronization in scale-free networks [J].
Batista, C. A. S. ;
Batista, A. M. ;
de Pontes, J. C. A. ;
Lopes, S. R. ;
Viana, R. L. .
CHAOS SOLITONS & FRACTALS, 2009, 41 (05) :2220-2225