Chaos reduced-order anti-synchronization of chaotic systems with fully unknown parameters

被引:21
作者
Al-sawalha, M. Mossa [1 ]
Noorani, M. S. M. [2 ]
机构
[1] Univ Hail, Dept Math, Fac Sci, Hail, Saudi Arabia
[2] Univ Kebangsaan Malaysia, Sch Math Sci, Ctr Modelling & Data Anal, Ukm Bangi 43600, Selangor, Malaysia
关键词
Reduced-order; Anti-synchronization; Adaptive control; Unknown parameters; ADAPTIVE SYNCHRONIZATION; HYPERCHAOTIC SYSTEMS; SCHEME;
D O I
10.1016/j.cnsns.2011.07.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this present paper, we elaborated the concept of the reduced-order anti-synchronization of uncertain chaotic systems. Based upon the parameters modulation and the adaptive control techniques, we show that dynamical evolution of third order chaotic system can be anti-synchronized with the projection of a fourth-order chaotic system even though their parameters are unknown. The techniques are successfully applied to several examples: hyperchaotic Chen system (fourth-order) and Lu system (third-order), theoretical analysis and numerical simulations are shown to verify the results. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1908 / 1920
页数:13
相关论文
共 38 条
[1]   Active Anti-Synchronization Between Identical and Distinctive Hyperchaotic Systems [J].
Al-sawalha, M. M. ;
Noorani, M. S. M. .
OPEN SYSTEMS & INFORMATION DYNAMICS, 2008, 15 (04) :371-382
[2]   Chaos anti-synchronization between two novel different hyperchaotic systems [J].
Al-Sawalha, M. Mossa ;
Noorani, M. S. M. .
CHINESE PHYSICS LETTERS, 2008, 25 (08) :2743-2746
[3]   Adaptive anti-synchronization of two identical and different hyperchaotic systems with uncertain parameters [J].
Al-Sawalha, M. Mossa ;
Noorani, M. S. M. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (04) :1036-1047
[4]   Anti-synchronization of chaotic systems with uncertain parameters via adaptive control [J].
Al-sawalha, M. Mossa ;
Noorani, M. S. M. .
PHYSICS LETTERS A, 2009, 373 (32) :2852-2857
[5]   On anti-synchronization of chaotic systems via nonlinear control [J].
Al-Sawalha, M. Mossa ;
Noorani, M. S. M. .
CHAOS SOLITONS & FRACTALS, 2009, 42 (01) :170-179
[6]   Anti-synchronization of two hyperchaotic systems via nonlinear control [J].
Al-Sawalha, M. Mossa ;
Noorani, M. S. M. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (08) :3402-3411
[7]   The synchronization of chaotic systems [J].
Boccaletti, S ;
Kurths, J ;
Osipov, G ;
Valladares, DL ;
Zhou, CS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2) :1-101
[8]   Stability analysis for the synchronization of chaotic systems with different order: application to secure communications [J].
Bowong, S .
PHYSICS LETTERS A, 2004, 326 (1-2) :102-113
[9]  
Bowong S, 2007, COMMUN NONLINEAR SCI, V12, P976, DOI [10.1016/j.cnsns.2005.10.003, 10.1016/j.cnsns.2004.12.008]
[10]   Synchronization in an array of linearly stochastically coupled networks with time delays [J].
Cao, Jinde ;
Wang, Zidong ;
Sun, Yonghui .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 385 (02) :718-728