Numerical methods for solving Schroinger equations in complex reproducing kernel Hilbert spaces

被引:8
作者
Geng, F. Z. [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Reproducing kernel; Radical basis function; Schroinger equations; FINITE-DIFFERENCE SCHEME; BOUNDARY-VALUE-PROBLEMS; TURNING-POINT PROBLEMS; SCHRODINGER-EQUATION;
D O I
10.1007/s40096-020-00337-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, complex reproducing kernel Hilbert spaces and their reproducing kernels are introduced. The reproducing kernel is constructed by combining Gaussian radical basis function kernel and spline kernel. In the spaces, using the related theory, a novel numerical method is developed to solve Schroinger equations. The present method is a meshless method and does not require connection between nodes of the simulation domain. The results of numerical experiments show our method is simple and has high accuracy.
引用
收藏
页码:293 / 299
页数:7
相关论文
共 24 条
[1]   Modulation of reproducing kernel Hilbert space method for numerical solutions of Riccati and Bernoulli equations in the Atangana-Baleanu fractional sense [J].
Abu Arqub, Omar ;
Maayah, Banan .
CHAOS SOLITONS & FRACTALS, 2019, 125 :163-170
[2]   Numerical solutions of systems of first-order, two-point BVPs based on the reproducing kernel algorithm [J].
Abu Arqub, Omar .
CALCOLO, 2018, 55 (03)
[3]   Computational algorithm for solving fredholm time-fractional partial integrodifferential equations of dirichlet functions type with error estimates [J].
Al-Smadi, Mohammed ;
Abu Arqub, Omar .
APPLIED MATHEMATICS AND COMPUTATION, 2019, 342 (280-294) :280-294
[4]  
Aronszajn N., 1950, Trans. A.M.S., V168, P1
[5]   An effective approach to numerical soliton solutions for the Schrodinger equation via modified cubic B-spline differential quadrature method [J].
Bashan, Ali ;
Yagmurlu, Nuri Murat ;
Ucar, Yusuf ;
Esen, Alaattin .
CHAOS SOLITONS & FRACTALS, 2017, 100 :45-56
[6]   The Sinc-collocation and Sinc-Galerkin methods for solving the two-dimensional Schrodinger equation with nonhomogeneous boundary conditions [J].
Dehghan, Mehdi ;
Emami-Naeini, Faezeh .
APPLIED MATHEMATICAL MODELLING, 2013, 37 (22) :9379-9397
[7]   An optimal reproducing kernel method for linear nonlocal boundary value problems [J].
Geng, F. Z. ;
Qian, S. P. .
APPLIED MATHEMATICS LETTERS, 2018, 77 :49-56
[8]   A new numerical method for singularly perturbed turning point problems with two boundary layers based on reproducing kernel method [J].
Geng, F. Z. ;
Qian, S. P. .
CALCOLO, 2017, 54 (02) :515-526
[9]   Modified reproducing kernel method for singularly perturbed boundary value problems with a delay [J].
Geng, F. Z. ;
Qian, S. P. .
APPLIED MATHEMATICAL MODELLING, 2015, 39 (18) :5592-5597
[10]   Reproducing kernel method for singularly perturbed turning point problems having twin boundary layers [J].
Geng, F. Z. ;
Qian, S. P. .
APPLIED MATHEMATICS LETTERS, 2013, 26 (10) :998-1004