Conservation laws and potential symmetries of systems of diffusion equations

被引:9
作者
Ivanova, N. M. [1 ]
Sophocleous, C. [2 ]
机构
[1] Natl Acad Sci Ukraine, Inst Math, UA-01601 Kiev, Ukraine
[2] Univ Cyprus, Dept Math & Stat, CY-1678 Nicosia, Cyprus
关键词
D O I
10.1088/1751-8113/41/23/235201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We classify local first-order conservation laws for a class of systems of nonlinear diffusion equations. The derived conservation laws are used to construct the set of inequivalent potential systems for the class under consideration. Four potential systems are investigated from the Lie point of view and new potential symmetries are obtained. An example of the reduction of a system of diffusion equations with respect to a potential symmetry generator is given. A nonlinear system that has applications in plasma physics is linearized using infinite-dimensional potential symmetries.
引用
收藏
页数:14
相关论文
共 23 条
[1]  
Akhatov I.Sh., 1991, J SOVIET MATH, V55, P1401
[2]  
AKHATOV IS, 1989, NOVEISHIE DOSTIZHENI, V34, P3
[3]   ON THE REMARKABLE NON-LINEAR DIFFUSION EQUATION (DELTA-DELTA-X)(A(U+B)-2(DELTA-U-DELTA-X))-(DELTA-U-DELTA-T) = 0 [J].
BLUMAN, G ;
KUMEI, S .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (05) :1019-1023
[4]  
Bluman G. W., 1989, Symmetries and Differential Equations
[5]   NEW CLASSES OF SYMMETRIES FOR PARTIAL-DIFFERENTIAL EQUATIONS [J].
BLUMAN, GW ;
REID, GJ ;
KUMEI, S .
JOURNAL OF MATHEMATICAL PHYSICS, 1988, 29 (04) :806-811
[6]   Lie group symmetry analysis of transport in porous media with variable transmissivity [J].
Edwards, M. P. ;
Hill, James M. ;
Selvadurai, A. P. S. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 341 (02) :906-921
[7]  
Ibragimov N H, 1985, MATH ITS APPL SOVIET
[8]   On the group classification of variable-coefficient nonlinear diffusion-convection equations [J].
Ivanova, N. M. ;
Sophodeous, C. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 197 (02) :322-344
[9]  
IVANOVA NM, 2007, ARXIV07103053
[10]  
JURY WA, 1981, WATER DESERT ECOSYST, P92