A NOTE ON WEAK SOLUTIONS TO STOCHASTIC DIFFERENTIAL EQUATIONS

被引:4
作者
Ondrejat, Martin [1 ]
Seidler, Jan [1 ]
机构
[1] Czech Acad Sci, Inst Informat Theory & Automat, Vodarenskou Vezi 4, Prague 18208 8, Czech Republic
关键词
stochastic differential equations; continuous coefficients; weak solutions;
D O I
10.14736/kyb-2018-5-0888
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We revisit the proof of existence of weak solutions of stochastic differential equations with continuous coeficients. In standard proofs, the coefficients are approximated by more regular ones and it is necessary to prove that: i) the laws of solutions of approximating equations form a tight set of measures on the paths space, ii) its cluster points are laws of solutions of the limit equation. We aim at showing that both steps may be done in a particularly simple and elementary manner.
引用
收藏
页码:888 / 907
页数:20
相关论文
共 17 条
  • [1] STOCHASTIC NAVIER-STOKES EQUATIONS
    BENSOUSSAN, A
    [J]. ACTA APPLICANDAE MATHEMATICAE, 1995, 38 (03) : 267 - 304
  • [2] Billingsley P., 1968, CONVERGE PROBAB MEAS, DOI [DOI 10.1002/9780470316962, 10.1002/9780470316962]
  • [3] Bogachev V.I., 2007, MEASURE THEORY, V1, DOI 10.1007/978-3-540-34514-5
  • [4] Invariant measures for stochastic nonlinear beam and wave equations
    Brzezniak, Zdzislaw
    Ondrejat, Martin
    Seidler, Jan
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (05) : 4157 - 4179
  • [5] Some particular problems of martingale theory
    Cherny, A
    [J]. From Stochastic Calculus to Mathematical Finance: The Shiryaev Festschrift, 2006, : 109 - 124
  • [6] Local martingale and pathwise solutions for an abstract fluids model
    Debussche, Arnaud
    Glatt-Holtz, Nathan
    Temam, Roger
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (14-15) : 1123 - 1144
  • [7] Dudley R. M., 2002, Cambridge Studies in Advanced Mathematics, V2nd, DOI [10.1017/CBO9780511755347, DOI 10.1017/CBO9780511755347]
  • [8] Gyongy I, 1996, PROBAB THEORY REL, V105, P143
  • [9] On Weak Solutions of Stochastic Differential Equations II
    Hofmanova, Martina
    Seidler, Jan
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 2013, 31 (04) : 663 - 670
  • [10] On Weak Solutions of Stochastic Differential Equations
    Hofmanova, Martina
    Seidler, Jan
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 2012, 30 (01) : 100 - 121