Markov Models for Image Labeling

被引:65
作者
Chen, S. Y. [1 ]
Tong, Hanyang [1 ]
Cattani, Carlo [2 ]
机构
[1] Zhejiang Univ Technol, Coll Comp Sci, Hangzhou 310023, Zhejiang, Peoples R China
[2] Univ Salerno, Dept Math, I-84084 Fisciano, Sa, Italy
基金
中国国家自然科学基金;
关键词
EFFICIENT BELIEF PROPAGATION; RANDOM-FIELD MODEL; GRAPH CUTS; ENERGY MINIMIZATION; SEGMENTATION; COLOR; STEREO; MRF;
D O I
10.1155/2012/814356
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Markov random field (MRF) is a widely used probabilistic model for expressing interaction of different events. One of the most successful applications is to solve image labeling problems in computer vision. This paper provides a survey of recent advances in this field. We give the background, basic concepts, and fundamental formulation of MRF. Two distinct kinds of discrete optimization methods, that is, belief propagation and graph cut, are discussed. We further focus on the solutions of two classical vision problems, that is, stereo and binary image segmentation using MRF model.
引用
收藏
页数:18
相关论文
共 77 条
[11]  
CHEN SF, 2007, P IEEE COMP SOC C CO, V1, P289
[12]   The Patch Transform [J].
Cho, Taeg Sang ;
Avidan, Shai ;
Freeman, William T. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (08) :1489-1501
[13]   A Probabilistic Framework for 3D Visual Object Representation [J].
Detry, Renaud ;
Pugeault, Nicolas ;
Piater, Justus H. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, 31 (10) :1790-1803
[14]   Improving Offline Handwritten Text Recognition with Hybrid HMM/ANN Models [J].
Espana-Boquera, Salvador ;
Jose Castro-Bleda, Maria ;
Gorbe-Moya, Jorge ;
Zamora-Martinez, Francisco .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (04) :767-779
[15]   Efficient belief propagation for early vision [J].
Felzenszwalb, Pedro F. ;
Huttenlocher, Daniel P. .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2006, 70 (01) :41-54
[16]   Dynamic Programming and Graph Algorithms in Computer Vision [J].
Felzenszwalb, Pedro F. ;
Zabih, Ramin .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (04) :721-740
[17]   Self-Validated Labeling of Markov Random Fields for Image Segmentation [J].
Feng, Wei ;
Jia, Jiaya ;
Liu, Zhi-Qiang .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (10) :1871-1887
[18]   Combining belief networks and neural networks for scene segmentation [J].
Feng, XJ ;
Williams, CKI ;
Felderhof, SN .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (04) :467-483
[19]   STOCHASTIC RELAXATION, GIBBS DISTRIBUTIONS, AND THE BAYESIAN RESTORATION OF IMAGES [J].
GEMAN, S ;
GEMAN, D .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1984, 6 (06) :721-741
[20]   EXACT MAXIMUM A-POSTERIORI ESTIMATION FOR BINARY IMAGES [J].
GREIG, DM ;
PORTEOUS, BT ;
SEHEULT, AH .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1989, 51 (02) :271-279