Phospholipid membrane restructuring induced by saposin C: a topographic study using atomic force microscopy

被引:19
|
作者
You, HX
Yu, L
Qi, XY
机构
[1] Univ Cincinnati, Coll Med, Dept Cell Biol Neurobiol & Anat, Cincinnati, OH 45267 USA
[2] Childrens Hosp Res Fdn, Div Human Genet, Cincinnati, OH 45229 USA
关键词
membrane restructure; lipid-protein interaction; Gaucher's disease; scanning probe microscopy;
D O I
10.1016/S0014-5793(01)02700-4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The enzymatic activity of glucosylceramidase depends on the presence of saposin C (Sap C) and acidic pbospholipid-containing membranes. In order to delineate the mechanism underlying Sap C stimulation of the enzyme activity, it is important to understand how Sap C interacts with phospholipid membranes. We studied the dynamic process of Sap C interaction with planar phospholipid membranes, in real time, using atomic force microscopy (AFM). The phospholipid membrane underwent restructuring upon addition of Sap C. The topographic characteristics of the membrane restructuring include the appearance of patch-like new features, initially emerged at the edge of phospholipid membranes and extended laterally with time. Changes in the image contrast of the phospholipid membrane observed after the Sap C addition indicate that a new phase of lipid-protein structure has formed during membrane restructuring. The process of membrane restructuring is dynamic, commencing shortly after Sap C addition, and continuing throughout the duration of AFM imaging (about 30 min, sometimes over 1 h). This study demonstrated the potential of AFM real-time imaging in studying protein-membrane interactions. (C) 2001 Published by Elsevier Science B.V. on behalf of the Federation of European Biochemical Societies.
引用
收藏
页码:97 / 102
页数:6
相关论文
共 50 条
  • [41] Determining the oligomeric state of a membrane protein using Atomic Force Microscopy
    不详
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2005, 34 (06): : 675 - 675
  • [42] Alpha-crystallin-membrane interactions using atomic force microscopy
    Khadka, Nawal K.
    Timsina, Raju
    Mainali, Laxman
    BIOPHYSICAL JOURNAL, 2022, 121 (03) : 418A - 418A
  • [43] Molecular imaging of membrane proteins and microfilaments using atomic force microscopy
    Jung, Se-Hui
    Park, Donghyun
    Park, Jae Hyo
    Kim, Young-Myeong
    Ha, Kwon-Soo
    EXPERIMENTAL AND MOLECULAR MEDICINE, 2010, 42 (09): : 597 - 605
  • [44] Tuning phospholipid bilayer permeability by flavonoid apigenin: Electrochemical and atomic force microscopy study
    Kocabova, Jana
    Kolivoska, Viliam
    Gal, Miroslav
    Sokolova, Romana
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2018, 821 : 67 - 72
  • [45] Study of force curves on paraffin deposits using atomic force microscopy
    Dotto, Marta E. R.
    Camargo, Sergio S., Jr.
    Ziglio, Claudio M.
    ENERGY & FUELS, 2007, 21 (03) : 1296 - 1300
  • [46] Induced nanoscale deformations in polymers using atomic force microscopy
    Lyuksyutov, SF
    Paramonov, PB
    Sharipov, RA
    Sigalov, G
    PHYSICAL REVIEW B, 2004, 70 (17): : 1 - 8
  • [47] Atomic force microscopy of the erythrocyte membrane skeleton
    Swihart, AH
    Mikrut, JM
    Ketterson, JB
    MacDonald, RC
    BIOPHYSICAL JOURNAL, 1996, 70 (02) : TU399 - TU399
  • [48] Atomic force microscopy of the erythrocyte membrane skeleton
    Swihart, AH
    Mikrut, JM
    Ketterson, JB
    MacDonald, RC
    JOURNAL OF MICROSCOPY-OXFORD, 2001, 204 : 212 - 225
  • [49] Electrochemical atomic force microscopy study of proton conductivity in a Nafion membrane
    Aleksandrova, Elena
    Hiesgen, Renate
    Friedrich, K. Andreas
    Roduner, Emil
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2007, 9 (21) : 2735 - 2743
  • [50] Atomic Force Microscopy Imaging of Membrane Proteins
    Goncalves, R. P.
    ACTA PHYSICA POLONICA A, 2010, 117 (02) : 408 - 411