Stacked regressions

被引:43
|
作者
Breiman, L
机构
关键词
stacking; non-negativity; trees; subset regression; combinations;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Stacking regressions is a method for forming linear combinations of different predictors to give improved prediction accuracy. The idea is to use cross-validation data and least squares under non-negativity constraints to determine the coefficients in the combination. Its effectiveness is demonstrated in stacking regression trees of different sizes add in a simulation stacking linear subset and ridge regressions. Reasons why this method works are explored. The idea of stacking originated with Wolpert (1992).
引用
收藏
页码:49 / 64
页数:16
相关论文
共 50 条
  • [1] Stacked regressions and structured variance partitioning for interpretable brain maps
    Lin, Ruogu
    Naselaris, Thomas
    Kay, Kendrick
    Wehbe, Leila
    NEUROIMAGE, 2024, 298
  • [2] Stacked Robust Adaptively Regularized Auto-Regressions for Domain Adaptation
    Jiang, Wenhao
    Gao, Hongchang
    Lu, Wei
    Liu, Wei
    Chung, Fu-Lai
    Huang, Heng
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2019, 31 (03) : 561 - 574
  • [3] Stacked linear regression analysis to facilitate testing of hypotheses across OLS regressions
    Oberfichtner, Michael
    Tauchmann, Harald
    STATA JOURNAL, 2021, 21 (02): : 411 - 429
  • [4] A Normal Behavior Model Based on Power Curve and Stacked Regressions for Condition Monitoring of Wind Turbines
    Bilendo, Francisco
    Badihi, Hamed
    Lu, Ningyun
    Cambron, Philippe
    Jiang, Bin
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [5] ONE-MATCH-AHEAD FORECASTING IN TWO-TEAM SPORTS WITH STACKED BAYESIAN REGRESSIONS
    Lam, Max W. Y.
    JOURNAL OF ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING RESEARCH, 2018, 8 (03) : 159 - 171
  • [6] Evolutionary Probability and Stacked Regressions Enable Data-Driven Protein Engineering with Minimized Experimental Effort
    Illig, Alexander-Maurice
    Siedhoff, Niklas E.
    Davari, Mehdi D.
    Schwaneberg, Ulrich
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (16) : 6350 - 6360
  • [7] Multitarget Normal Behavior Model Based on Heterogeneous Stacked Regressions and Change-Point Detection for Wind Turbine Condition Monitoring
    Bilendo, Francisco
    Lu, Ningyun
    Badihi, Hamed
    Meyer, Angela
    Cali, Umit
    Cambron, Philippe
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (04) : 5171 - 5181
  • [8] A COMPARISON OF DETRANSFORMED LOGARITHMIC REGRESSIONS AND POWER FUNCTION REGRESSIONS
    JANSSON, M
    GEOGRAFISKA ANNALER SERIES A-PHYSICAL GEOGRAPHY, 1985, 67 (1-2) : 61 - 70
  • [9] Ordered Regressions
    Rosen, Sophia
    Davidov, Ori
    SCANDINAVIAN JOURNAL OF STATISTICS, 2017, 44 (04) : 817 - 842
  • [10] Traceable Regressions
    Wermuth, Nanny
    INTERNATIONAL STATISTICAL REVIEW, 2012, 80 (03) : 415 - 438