VARYING THE DIRECTION OF PROPAGATION IN REACTION-DIFFUSION EQUATIONS IN PERIODIC MEDIA

被引:9
作者
Alfaro, Matthieu [1 ]
Giletti, Thomas [2 ]
机构
[1] Univ Montpellier, IMAG, CC051, F-34095 Montpellier, France
[2] Univ Lorraine, IECL, BP 70239, F-54506 Vandoeuvre Les Nancy, France
关键词
Periodic media; monostable nonlinearity; ignition nonlinearity; pulsating traveling front; spreading properties; FRAGMENTED ENVIRONMENT MODEL; FRONT PROPAGATION; TRAVELING WAVES; EXISTENCE;
D O I
10.3934/nhm.2016001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a multidimensional reaction-diffusion equation of either ignition or monostable type, involving periodic heterogeneity, and analyze the dependence of the propagation phenomena on the direction. We prove that the (minimal) speed of the underlying pulsating fronts depends continuously on the direction of propagation, and so does its associated profile provided it is unique up to time shifts. We also prove that the spreading properties [25] are actually uniform with respect to the direction.
引用
收藏
页码:369 / 393
页数:25
相关论文
共 30 条
[1]   ASYMPTOTIC ANALYSIS OF A MONOSTABLE EQUATION IN PERIODIC MEDIA [J].
Alfaro, Matthieu ;
Giletti, Thomas .
TAMKANG JOURNAL OF MATHEMATICS, 2016, 47 (01) :1-26
[2]  
[Anonymous], 1937, B MOSCOW U MATH MECH
[3]  
[Anonymous], 1996, 2 ORDER PARABOLIC DI, DOI DOI 10.1142/3302
[4]  
Aronson D. G., 1975, Lecture Notes in Math., V446, P5, DOI [10.1007/BFb0070595, DOI 10.1007/BFB0070595]
[5]   MULTIDIMENSIONAL NON-LINEAR DIFFUSION ARISING IN POPULATION-GENETICS [J].
ARONSON, DG ;
WEINBERGER, HF .
ADVANCES IN MATHEMATICS, 1978, 30 (01) :33-76
[6]   Analysis of the periodically fragmented environment model: II - biological invasions and pulsating travelling fronts [J].
Berestycki, H ;
Hamel, F ;
Roques, L .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (08) :1101-1146
[7]   Analysis of the periodically fragmented environment model: I - Species persistence [J].
Berestycki, H ;
Hamel, F ;
Roques, L .
JOURNAL OF MATHEMATICAL BIOLOGY, 2005, 51 (01) :75-113
[8]   TRAVELING WAVE SOLUTIONS TO COMBUSTION MODELS AND THEIR SINGULAR LIMITS [J].
BERESTYCKI, H ;
NICOLAENKO, B ;
SCHEURER, B .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1985, 16 (06) :1207-1242
[9]   TRAVELING FRONTS IN CYLINDERS [J].
BERESTYCKI, H ;
NIRENBERG, L .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1992, 9 (05) :497-572
[10]   Front propagation in periodic excitable media [J].
Berestycki, H ;
Hamel, F .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2002, 55 (08) :949-1032