Stochastic perturbation of sweeping process and a convergence result for an associated numerical scheme

被引:17
作者
Bernicot, Frederic [1 ]
Venel, Juliette [2 ]
机构
[1] Univ Lille 1, CNRS, Lab Math Paul Painleve, F-59655 Villeneuve Dascq, France
[2] Univ Valenciennes & Hainaut Cambresis, LAMAV, F-59313 Valenciennes 9, France
关键词
Sweeping process; Differential inclusions; Stochastic differential equations; Euler scheme; DIFFERENTIAL-EQUATIONS; REFLECTING BOUNDARY; BANACH-SPACES; CROWD MOTION; SETS; VERSION; CONES; MODEL;
D O I
10.1016/j.jde.2011.03.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Here we present well-posedness results for first order stochastic differential inclusions, more precisely for sweeping process with a stochastic perturbation. These results are provided in combining both deterministic sweeping process theory (recently developed in Edmond and Thibault (2005, 2006) [18,19]) and methods concerning the reflection of a Brownian motion (Lions and Sznitman, 1984 [23] and Saisho, 1987 [31]). In addition, we prove convergence results for an Euler scheme, discretizing these stochastic differential inclusions. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1195 / 1224
页数:30
相关论文
共 41 条
[1]  
[Anonymous], J MATH KYOTO U
[2]  
Barber Janet C., 2010, PLANT SYST EVOL, V289, P35, DOI [10.1007/s00606-010-0329-7, DOI 10.1007/S00606-010-0329-7]
[3]  
Bellman R., 1943, Duke Math. J, V10, P643, DOI [DOI 10.1215/S0012-7094-43-01059-2, 10.1215/S0012-7094-43-01059-2]
[4]   Existence of solutions to the nonconvex sweeping process [J].
Benabdellah, H .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 164 (02) :286-295
[5]  
BENSOUSSAN A., 1982, Controle Impulsionnel et Inequations Quasi-Variationnelles
[6]  
Bernard F, 2006, J CONVEX ANAL, V13, P525
[7]   Multivalued Stochastic differential equations: Convergence of a numerical scheme [J].
Bernardin, F .
SET-VALUED ANALYSIS, 2003, 11 (04) :393-415
[8]  
BERNICOT F, 2010, SEM EQ DER PART EC P
[9]  
Bernicot F, 2010, J CONVEX ANAL, V17, P451
[10]  
Bounkhel M, 2005, J NONLINEAR CONVEX A, V6, P359