Yetter-Drinfeld Modules forWeak Hom-Hopf Algebras

被引:1
|
作者
Guo, Shuangjian [1 ]
Ke, Yuanyuan [2 ]
机构
[1] Guizhou Univ Finance & Econ, Sch Math & Stat, Guiyang 550025, Guizhou, Peoples R China
[2] Jianghan Univ, Sch Math & Comp Sci, Wuhan 430056, Hubei, Peoples R China
关键词
Yetter-Drinfeld module; braided monoidal category; (co)quasitriangular; weak-Hom type entwined-module; LIE-ALGEBRAS; DEFORMATIONS;
D O I
10.2298/FIL1713069G
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to define and study Yetter-Drinfeld modules over weak Hom-Hopf algebras. We show that the category HWYDH of Yetter-Drinfeld modules with bijective structure maps over weak Hom-Hopf algebras is a rigid category and a braided monoidal category, and obtain a new solution of quantum Hom-Yang-Baxter equation. It turns out that, If H is quasitriangular (respectively, coquasitriangular) weak Hom-Hopf algebras, the category of modules (respectively, comodules) with bijective structure maps over H is a braided monoidal subcategory of the category HWYDH of Yetter-Drinfeld modules over weak Hom-Hopf algebras.
引用
收藏
页码:4069 / 4084
页数:16
相关论文
共 50 条
  • [41] Projective class rings of a kind of category of Yetter-Drinfeld modules
    Guo, Yaguo
    Yang, Shilin
    AIMS MATHEMATICS, 2023, 8 (05): : 10997 - 11014
  • [42] The Grothendieck ring of Yetter-Drinfeld modules over a class of 2n2-dimensional Kac-Paljutkin Hopf algebras
    Guo, Yaguo
    Yang, Shilin
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (11) : 4517 - 4566
  • [43] On Lie Algebras in the Category of Yetter—Drinfeld Modules
    Bodo Pareigis
    Applied Categorical Structures, 1998, 6 : 151 - 175
  • [44] Functors for Long dimodules and Yetter-Drinfeld modules in a weak setting
    Alvarez, Jose Nicanor Alonso
    Rodriguez, Ramon Gonzalez
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2023, 150 : 247 - 266
  • [45] Hom-Hopf group coalgebras and braided T-categories obtained from Hom-Hopf algebras
    You, Miman
    Zhou, Nan
    Wang, Shuanhong
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (11)
  • [46] Hom-Lie Admissible Hom-Coalgebras and Hom-Hopf Algebras
    Makhlouf, Abdenacer
    Silvestrov, Sergei
    GENERALIZED LIE THEORY IN MATHEMATICS, PHYSICS AND BEYOND, 2009, : 189 - +
  • [48] EQUIVALENT CROSSED PRODUCTS OF MONOIDAL HOM-HOPF ALGEBRAS
    Wang, Zhongwei
    Zhang, Liangyun
    Zheng, Huihui
    GLASNIK MATEMATICKI, 2019, 54 (02) : 345 - 367
  • [49] Separable extensions for crossed products over monoidal Hom-Hopf algebras
    Wang, Zhongwei
    Chen, Yuanyuan
    Zhang, Liangyun
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2018, 17 (09)
  • [50] Determinants and symmetries in 'Yetter-Drinfeld' categories
    Cohen, M
    Westreich, S
    APPLIED CATEGORICAL STRUCTURES, 1998, 6 (02) : 267 - 289