Parametric partial control of chaotic systems

被引:11
作者
Capeans, Ruben [1 ]
Sabuco, Juan [1 ]
Sanjuan, Miguel A. F. [1 ]
机构
[1] Univ Rey Juan Carlos, Dept Fis, Tulipan S-N, Madrid 28933, Spain
关键词
Chaos control; Transient chaos; Random maps; INDECOMPOSABLE CONTINUA; RANDOM MAPS; DYNAMICS; FLOWS; MODEL; SETS;
D O I
10.1007/s11071-016-2929-4
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Discrete dynamical systems where one or several of their parameters vary randomly every iteration are usually referred to as random maps in the literature. However, very few methodologies have been proposed to control these kinds of systems when chaos is present. Here, we propose an extension of the partial control method, that we call parametric partial control, that can be naturally applied to random maps. We show that using this control method it is possible to avoid escapes from a region of the phase space with a transient chaotic behavior. The main advantage of this method is that it allows to control the system even if the corrections applied to the parameter are smaller than the disturbances affecting it. To illustrate how the method works, we have applied it to three paradigmatic models in nonlinear dynamics, the logistic map, the H,non map and the Duffing oscillator.
引用
收藏
页码:869 / 876
页数:8
相关论文
共 17 条
[1]  
Arnold L., 1998, Random Dynamical Systems
[2]   Set invariance in control [J].
Blanchini, F .
AUTOMATICA, 1999, 35 (11) :1747-1767
[3]   When less is more: Partial control to avoid extinction of predators in an ecological model [J].
Capeans, Ruben ;
Sabuco, Juan ;
Sanjuan, Miguel A. F. .
ECOLOGICAL COMPLEXITY, 2014, 19 :1-8
[4]   EXPERIMENTAL CONTROL OF CHAOS [J].
DITTO, WL ;
RAUSEO, SN ;
SPANO, ML .
PHYSICAL REVIEW LETTERS, 1990, 65 (26) :3211-3214
[5]   The slow invariant manifold of a conservative pendulum-oscillator system [J].
Georgiou, IT ;
Schwartz, IB .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (04) :673-692
[6]   Maintenance of chaos in a computational model of a thermal pulse combustor [J].
In, V ;
Spano, ML ;
Neff, JD ;
Ditto, WL ;
Daw, CS ;
Edwards, KD ;
Nguyen, K .
CHAOS, 1997, 7 (04) :605-613
[7]   Modeling fractal entrainment sets of tracers advected by chaotic temporally irregular fluid flows using random maps [J].
Jacobs, J ;
Ott, E ;
Antonsen, T ;
Yorke, J .
PHYSICA D, 1997, 110 (1-2) :1-17
[8]   Avoiding healthy cells extinction in a cancer model [J].
Lopez, Alvaro G. ;
Sabuco, Juan ;
Seoane, Jesus M. ;
Duarte, Jorge ;
Januario, Cristina ;
Sanjuan, Miguel A. F. .
JOURNAL OF THEORETICAL BIOLOGY, 2014, 349 :74-81
[9]   Advection in chaotically time-dependent open flows [J].
Neufeld, Z ;
Tel, T .
PHYSICAL REVIEW E, 1998, 57 (03) :2832-2842
[10]   CONTROLLING CHAOS [J].
OTT, E ;
GREBOGI, C ;
YORKE, JA .
PHYSICAL REVIEW LETTERS, 1990, 64 (11) :1196-1199