Privacy protection federated learning system based on blockchain and edge computing in mobile crowdsourcing

被引:30
作者
Wang, Weilong [1 ,2 ]
Wang, Yingjie [1 ,2 ]
Huang, Yan [3 ]
Mu, Chunxiao [1 ,2 ]
Sun, Zice [1 ,2 ]
Tong, Xiangrong [1 ,2 ]
Cai, Zhipeng [4 ]
机构
[1] Yantai Univ, Sch Comp & Control Engn, Yantai 264005, Peoples R China
[2] Yantai Key Lab High End Ocean Engn Equipment & In, Yantai 264005, Peoples R China
[3] Kennesaw State Univ, Dept Software Enportraitgineering & Game Dev, 1100 South Marietta Pkwy, Marietta, GA 30060 USA
[4] Georgia State Univ, Dept Comp Sci, Atlanta, GA 30303 USA
基金
中国国家自然科学基金;
关键词
Mobile crowdsourcing; Privacy protection; Blockchain; Edge computing; Federated learning; Localized Differential Privacy; INCENTIVE MECHANISM; AGGREGATION;
D O I
10.1016/j.comnet.2022.109206
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
With the rapid popularization and development of the Internet of Things (IoT) and 5G networks, mobile crowdsourcing (MCS) has become an indispensable part in today's society. However, when task participants submit tasks, they are likely to expose their data privacy and location privacy. These privacy will be maliciously attacked and exploited by attackers (external attackers and untrusted third party). With the rapid increase of MCS data throughput, traditional cloud platforms can no longer meet the huge data processing needs. To solve these problems, this paper proposes an MCS federated learning system based on Blockchain and edge computing. This paper uses federated learning as the framework of the MCS system. The system protects data privacy and location privacy by using the Double local disturbance Localized Differential Privacy (DLD-LDP) proposed in this paper. Because the sensed data exists in multiple modalities (text, video, audio, etc.), this paper uses the Multi-modal Transformer (MulT) method to merge the multi-modal data before subsequent operations. To solve the problem that the third party is untrusted, we utilize Blockchain to distribute tasks and collect models in a distributed way. A reputation calculation method (Sig-RCU) is proposed to calculate the real-time reputation of task participants. Through conducting experiments on real data sets, the effectiveness and adaptation of the proposed DLD-LDP algorithm and Sig-RCU algorithm are verified.
引用
收藏
页数:16
相关论文
共 68 条
[1]   Detecting malicious behaviour using supervised learning algorithms of the function calls [J].
Alazab, Mamoun ;
Venkatraman, Sitalakshmi .
INTERNATIONAL JOURNAL OF ELECTRONIC SECURITY AND DIGITAL FORENSICS, 2013, 5 (02) :90-109
[2]  
Alphonse A., 2020, Handbook of Research on Blockchain Technology, P295
[3]   TCNS: Node Selection With Privacy Protection in Crowdsensing Based on Twice Consensuses of Blockchain [J].
An, Jian ;
Yang, He ;
Gui, Xiaolin ;
Zhang, Wendong ;
Gui, Ruowei ;
Kang, Jingjing .
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2019, 16 (03) :1255-1267
[4]   A Trustworthy Privacy Preserving Framework for Machine Learning in Industrial IoT Systems [J].
Arachchige, Pathum Chamikara Mahawaga ;
Bertok, Peter ;
Khalil, Ibrahim ;
Liu, Dongxi ;
Camtepe, Seyit ;
Atiquzzaman, Mohammed .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (09) :6092-6102
[5]  
Arun K., 2019, INT J MANAGEMENT IT, V9, P118
[6]   Poster: A Reliable and Accountable Privacy-Preserving Federated Learning Framework using the Blockchain [J].
Awan, Sana ;
Li, Fengjun ;
Luo, Bo ;
Liu, Mei .
PROCEEDINGS OF THE 2019 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY (CCS'19), 2019, :2561-2563
[7]   Privacy-preserving and Utility-aware Participant Selection for Mobile Crowd Sensing [J].
Azhar, Shanila ;
Chang, Shan ;
Liu, Ye ;
Tao, Yuting ;
Liu, Guohua .
MOBILE NETWORKS & APPLICATIONS, 2022, 27 (01) :290-302
[8]   Generative Adversarial Networks: A Survey Toward Private and Secure Applications [J].
Cai, Zhipeng ;
Xiong, Zuobin ;
Xu, Honghui ;
Wang, Peng ;
Li, Wei ;
Pan, Yi .
ACM COMPUTING SURVEYS, 2021, 54 (06)
[9]   Trading Private Range Counting over Big IoT Data [J].
Cai, Zhipeng ;
He, Zaobo .
2019 39TH IEEE INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS 2019), 2019, :144-153
[10]   A Differential-Private Framework for Urban Traffic Flows Estimation via Taxi Companies [J].
Cai, Zhipeng ;
Zheng, Xu ;
Yu, Jiguo .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2019, 15 (12) :6492-6499