A high-voltage and stable zinc-air battery enabled by dual-hydrophobic-induced proton shuttle shielding

被引:47
作者
Cui, Yang-feng [1 ,2 ]
Zhu, Yun-hai [1 ,3 ]
Du, Jia-yi [1 ,4 ]
Zhang, Yong-lai [1 ]
Li, Kai [1 ]
Liu, Wan-qiang [2 ]
Huang, Gang [1 ]
Zhang, Xin-bo [1 ,4 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Rare Earth Resource Utilizat, Changchun 130022, Peoples R China
[2] Changchun Univ Sci & Technol, Sch Materials Sci & Engn, Changchun 130022, Peoples R China
[3] Jilin Univ, Dept Materials Sci & Engn, Key Lab Automobile Materials, Minist Educ, Changchun 130022, Peoples R China
[4] Univ Sci & Technol China, Sch Appl Chem & Engn, Hefei 230026, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
MOLECULAR-DYNAMICS; OXYGEN EVOLUTION; IONIC LIQUIDS; CHALLENGES; DEGRADATION; ADSORPTION; STRATEGIES; GRAPHENE;
D O I
10.1016/j.joule.2022.05.019
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Rechargeable zinc-air batteries (ZABs) stand out among next-generation battery technologies due to their high energy density and high safety but suffer from electrochemical irreversibility. Herein, we report a hybrid ZAB with a long lifespan and high working voltage; it uses a neutral anolyte, an acidic catholyte, and a proton-shuttle-shielding dual-hydrophobic membrane to isolate the two electrolytes. The hybrid ZAB operates through the stable electrochemical plating and stripping of zinc (Zn) in a neutral anolyte and a high-voltage O-2 redox reaction in acidic catholyte. The designed proton-shuttle-shielding dual-hydrophobic membrane selectively transports hydrophobic bis(trifluoromethylsulfonyl) imide anions (TFSI ) and effectively avoids the crossover of protons. As a result, the hybrid ZAB exhibits a high working voltage (1.50 V) and stable operation (up to 2,000.0 h) in ambient air. This strategy not only overcomes the severe irreversibility of conventional ZABs but also promotes development of electrolyte-decoupled systems.
引用
收藏
页码:1617 / 1631
页数:16
相关论文
共 54 条
  • [1] Heterostructure-Promoted Oxygen Electrocatalysis Enables Rechargeable Zinc-Air Battery with Neutral Aqueous Electrolyte
    An, Li
    Zhang, Zhiyong
    Feng, Jianrui
    Lv, Fan
    Li, Yuxuan
    Wang, Rui
    Lu, Min
    Gupta, Ram B.
    Xi, Pinxian
    Zhang, Sen
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (50) : 17624 - 17631
  • [2] Armand M, 2009, NAT MATER, V8, P621, DOI [10.1038/NMAT2448, 10.1038/nmat2448]
  • [3] PROJECTOR AUGMENTED-WAVE METHOD
    BLOCHL, PE
    [J]. PHYSICAL REVIEW B, 1994, 50 (24): : 17953 - 17979
  • [4] Recent Advances in Materials and Design of Electrochemically Rechargeable Zinc-Air Batteries
    Chen, Xuncai
    Zhou, Zheng
    Karahan, Huseyin Enis
    Shao, Qian
    Wei, Li
    Chen, Yuan
    [J]. SMALL, 2018, 14 (44)
  • [5] Nature of Excess Hydrated Proton at the Water-Air Interface
    Das, Sudipta
    Imoto, Sho
    Sun, Shumei
    Nagata, Yuki
    Backus, Ellen H. G.
    Bonn, Mischa
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (02) : 945 - 952
  • [6] A zinc-iron redox-flow battery under $100 per kW h of system capital cost
    Gong, Ke
    Ma, Xiaoya
    Conforti, Kameron M.
    Kuttler, Kevin J.
    Grunewald, Jonathan B.
    Yeager, Kelsey L.
    Bazant, Martin Z.
    Gu, Shuang
    Yan, Yushan
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (10) : 2941 - 2945
  • [7] Rechargeable zinc-air batteries: a promising way to green energy
    Gu, Peng
    Zheng, Mingbo
    Zhao, Qunxing
    Xiao, Xiao
    Xue, Huaiguo
    Pang, Huan
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (17) : 7651 - 7666
  • [8] A multiple ion-exchange membrane design for redox flow batteries
    Gu, Shuang
    Gong, Ke
    Yan, Emily Z.
    Yan, Yushan
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (09) : 2986 - 2998
  • [9] Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries
    Hao, Junnan
    Li, Xiaolong
    Zeng, Xiaohui
    Li, Dan
    Mao, Jianfeng
    Guo, Zaiping
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (11) : 3917 - 3949
  • [10] CANONICAL DYNAMICS - EQUILIBRIUM PHASE-SPACE DISTRIBUTIONS
    HOOVER, WG
    [J]. PHYSICAL REVIEW A, 1985, 31 (03): : 1695 - 1697