Minimal setup for non-Abelian braiding of Majorana zero modes

被引:13
|
作者
Liu, Jie [1 ]
Chen, Wenqin [1 ]
Gong, Ming [2 ]
Wu, Yijia [2 ]
Xie, XinCheng [2 ,3 ,4 ]
机构
[1] Xi An Jiao Tong Univ, Sch Phys, Minist Educ, Key Lab Nonequilibrium Synth & Modulat Condensed, Xian 710049, Peoples R China
[2] Peking Univ, Int Ctr Quantum Mat, Sch Phys, Beijing 100871, Peoples R China
[3] Beijing Acad Quantum Informat Sci, Beijing 100193, Peoples R China
[4] Univ Chinese Acad Sci, CAS Ctr Excellence Topol Quantum Computat, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
non-Abelian statistics; geometric phase; Majorana zero modes; 74; 45; +c; 20; Mn; 78; -w; TOPOLOGICAL SUPERCONDUCTIVITY; STATISTICS; FERMIONS;
D O I
10.1007/s11433-021-1773-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Braiding Majorana zero modes (MZMs) is the key procedure toward topological quantum computation. However, the complexity of the braiding manipulation hinders its experimental realization. Here we propose an experimental setup consisting of MZMs and a quantum dot state which can substantially simplify the braiding protocol of MZMs. Such braiding scheme, corresponding to a specific closed loop in the parameter space, is quite universal and can be realized in various platforms. Moreover, the braiding results can be measured and manifested through electric current, providing a simple and novel way to detect the non-Abelian statistics of MZMs.
引用
收藏
页数:6
相关论文
共 50 条
  • [42] Twist defects and projective non-Abelian braiding statistics
    Barkeshli, Maissam
    Jian, Chao-Ming
    Qi, Xiao-Liang
    PHYSICAL REVIEW B, 2013, 87 (04)
  • [43] Non-Abelian braiding of graph vertices in a superconducting processor
    Andersen, T. I.
    Lensky, Y. D.
    Kechedzhi, K.
    Drozdov, I. K.
    Bengtsson, A.
    Hong, S.
    Morvan, A.
    Mi, X.
    Opremcak, A.
    Acharya, R.
    Allen, R.
    Ansmann, M.
    Arute, F.
    Arya, K.
    Asfaw, A.
    Atalaya, J.
    Babbush, R.
    Bacon, D.
    Bardin, J. C.
    Bortoli, G.
    Bourassa, A.
    Bovaird, J.
    Brill, L.
    Broughton, M.
    Buckley, B. B.
    Buell, D. A.
    Burger, T.
    Burkett, B.
    Bushnell, N.
    Chen, Z.
    Chiaro, B.
    Chik, D.
    Chou, C.
    Cogan, J.
    Collins, R.
    Conner, P.
    Courtney, W.
    Crook, A. L.
    Curtin, B.
    Debroy, D. M.
    Del Toro Barba, A.
    Demura, S.
    Dunsworth, A.
    Eppens, D.
    Erickson, C.
    Faoro, L.
    Farhi, E.
    Fatemi, R.
    Ferreira, V. S.
    Burgos, L. F.
    NATURE, 2023, 618 (7964) : 264 - +
  • [44] ZERO MODES OF THE VORTEX-FERMION SYSTEM - THE NON-ABELIAN CASE
    CUGLIANDOLO, LF
    LOZANO, G
    PHYSICAL REVIEW D, 1989, 39 (10) : 3093 - 3095
  • [45] Majorana Fermions in Non-Abelian QCD Vortices
    Itakura, Kazunori
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2010, (186): : 549 - 555
  • [46] Non-Abelian braiding of Fibonacci anyons with a superconducting processor
    Xu, Shibo
    Sun, Zheng-Zhi
    Wang, Ke
    Li, Hekang
    Zhu, Zitian
    Dong, Hang
    Deng, Jinfeng
    Zhang, Xu
    Chen, Jiachen
    Wu, Yaozu
    Zhang, Chuanyu
    Jin, Feitong
    Zhu, Xuhao
    Gao, Yu
    Zhang, Aosai
    Wang, Ning
    Zou, Yiren
    Tan, Ziqi
    Shen, Fanhao
    Zhong, Jiarun
    Bao, Zehang
    Li, Weikang
    Jiang, Wenjie
    Yu, Li-Wei
    Song, Zixuan
    Zhang, Pengfei
    Xiang, Liang
    Guo, Qiujiang
    Wang, Zhen
    Song, Chao
    Wang, H.
    Deng, Dong-Ling
    NATURE PHYSICS, 2024, 20 (09) : 1469 - 1475
  • [47] Circulator function in a Josephson junction circuit and braiding of Majorana zero modes
    Kim, Mun Dae
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [48] Circulator function in a Josephson junction circuit and braiding of Majorana zero modes
    Mun Dae Kim
    Scientific Reports, 11
  • [49] Effects of disorder on Coulomb-assisted braiding of Majorana zero modes
    Fulga, I. C.
    van Heck, B.
    Burrello, M.
    Hyart, T.
    PHYSICAL REVIEW B, 2013, 88 (15)
  • [50] Braiding Majorana zero modes in a two-dimensional grid structure
    Li, Shilong
    Bao, Linsheng
    Huang, Shipeng
    Ning, Jiayun
    Shi, Aoqian
    Peng, Peng
    Liu, Jianjun
    PHYSICAL REVIEW A, 2025, 111 (03)