Minimal setup for non-Abelian braiding of Majorana zero modes

被引:13
|
作者
Liu, Jie [1 ]
Chen, Wenqin [1 ]
Gong, Ming [2 ]
Wu, Yijia [2 ]
Xie, XinCheng [2 ,3 ,4 ]
机构
[1] Xi An Jiao Tong Univ, Sch Phys, Minist Educ, Key Lab Nonequilibrium Synth & Modulat Condensed, Xian 710049, Peoples R China
[2] Peking Univ, Int Ctr Quantum Mat, Sch Phys, Beijing 100871, Peoples R China
[3] Beijing Acad Quantum Informat Sci, Beijing 100193, Peoples R China
[4] Univ Chinese Acad Sci, CAS Ctr Excellence Topol Quantum Computat, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
non-Abelian statistics; geometric phase; Majorana zero modes; 74; 45; +c; 20; Mn; 78; -w; TOPOLOGICAL SUPERCONDUCTIVITY; STATISTICS; FERMIONS;
D O I
10.1007/s11433-021-1773-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Braiding Majorana zero modes (MZMs) is the key procedure toward topological quantum computation. However, the complexity of the braiding manipulation hinders its experimental realization. Here we propose an experimental setup consisting of MZMs and a quantum dot state which can substantially simplify the braiding protocol of MZMs. Such braiding scheme, corresponding to a specific closed loop in the parameter space, is quite universal and can be realized in various platforms. Moreover, the braiding results can be measured and manifested through electric current, providing a simple and novel way to detect the non-Abelian statistics of MZMs.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Braiding Majorana zero modes using quantum dots
    Malciu, Corneliu
    Mazza, Leonardo
    Mora, Christophe
    PHYSICAL REVIEW B, 2018, 98 (16)
  • [32] Unitary symmetry-protected non-Abelian statistics of Majorana modes
    Hong, Jian-Song
    Poon, Ting-Fung Jeffrey
    Zhang, Long
    Liu, Xiong-Jun
    PHYSICAL REVIEW B, 2022, 105 (02)
  • [33] Majorana fermions qubit states and non-Abelian braiding statistics in quenched inhomogeneous spin ladders
    He, Yin-Chen
    Chen, Yan
    PHYSICAL REVIEW B, 2013, 88 (18):
  • [34] Braiding and Fusion of Non-Abelian Vortex Anyons
    Mawson, T.
    Petersen, T. C.
    Slingerland, J. K.
    Simula, T. P.
    PHYSICAL REVIEW LETTERS, 2019, 123 (14)
  • [35] Non-Abelian Braiding of Topological Edge Bands
    Long, Yang
    Wang, Zihao
    Zhang, Chen
    Xue, Haoran
    Zhao, Y. X.
    Zhang, Baile
    PHYSICAL REVIEW LETTERS, 2024, 132 (23)
  • [36] Quasiparticle operators with non-Abelian braiding statistics
    Cabra, DC
    Moreno, EF
    Rossini, GL
    PHYSICS LETTERS B, 1998, 437 (3-4) : 362 - 368
  • [37] Symmetry-protected non-Abelian braiding of Majorana Kramers pairs (vol 94, 224509, 2016)
    Gao, Pin
    He, Ying-Ping
    Liu, Xiong-Jun
    PHYSICAL REVIEW B, 2017, 95 (01)
  • [38] Non-Abelian braiding of Majorana-like edge states and topological quantum computations in electric circuits
    Ezawa, Motohiko
    PHYSICAL REVIEW B, 2020, 102 (07)
  • [39] Effect of impurities and disorder on the braiding dynamics of Majorana zero modes
    Peeters, Cole
    Hodge, Themba
    Mascot, Eric
    Rachel, Stephan
    PHYSICAL REVIEW B, 2024, 110 (21)
  • [40] Braiding of non-Abelian anyons using pairwise interactions
    Burrello, M.
    van Heck, B.
    Akhmerov, A. R.
    PHYSICAL REVIEW A, 2013, 87 (02):