The evolution of chaotic dynamics for fractional unified system

被引:60
作者
Deng, Weihua [1 ,2 ]
Li, Changpin [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
关键词
D O I
10.1016/j.physleta.2007.07.049
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Based on reliable numerical approach, this Letter studies the chaotic behavior of the fractional unified system. The lowest orders for this system to have a complete chaotic attractor (the attractor covers the three equilibrium points of the classical unified system) at different parameter values are obtained. A striking finding is that with the increase of the parameter alpha of the fractional unified system from 0 to 1, the lowest order for this system to have a complete chaotic attractor monotonically decreases from 2.97 to 2.07. Because of the inherent attribute (memory effects) of fractional derivatives, this finding reveals that the chaotic behavior of fractional (classical) unified system becomes stronger and stronger when a increases from 0 to 1. Furthermore, this Letter introduces a novel measure to characterize the chaos intensity of fractional (classical) differential system. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:401 / 407
页数:7
相关论文
共 57 条
[1]   Special Issue: Fractional Derivatives and their Applications - Introduction [J].
Agrawal, OP ;
Machado, JAT ;
Sabatier, J .
NONLINEAR DYNAMICS, 2004, 38 (1-4) :1-2
[2]   Chaos in fractional-order autonomous nonlinear systems [J].
Ahmad, WM ;
Sprott, JC .
CHAOS SOLITONS & FRACTALS, 2003, 16 (02) :339-351
[3]  
Butzer P., 2000, An Introduction to Fractional Calculus
[4]   LINEAR MODELS OF DISSIPATION WHOSE Q IS ALMOST FREQUENCY INDEPENDENT-2 [J].
CAPUTO, M .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1967, 13 (05) :529-&
[5]   Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence model [J].
Carreras, BA ;
Lynch, VE ;
Zaslavsky, GM .
PHYSICS OF PLASMAS, 2001, 8 (12) :5096-5103
[6]   On the generalized Lorenz canonical form [J].
Celikovsky, S ;
Chen, GR .
CHAOS SOLITONS & FRACTALS, 2005, 26 (05) :1271-1276
[7]   On a generalized Lorenz canonical form of chaotic systems [J].
Celikovsky, S ;
Chen, GR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (08) :1789-1812
[8]   FRACTAL SYSTEM AS REPRESENTED BY SINGULARITY FUNCTION [J].
CHAREF, A ;
SUN, HH ;
TSAO, YY ;
ONARAL, B .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (09) :1465-1470
[9]  
Chen G., 2003, DYNAMICS LORENZ SYST
[10]   Short memory principle and a predictor-corrector approach for fractional differential equations [J].
Deng, Weihua .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 206 (01) :174-188