Geometric Mathematical Framework for Multibody System Dynamics

被引:0
作者
Terze, Zdravko [1 ]
Vrdoljak, Milan [1 ]
Zlatar, Dario [1 ]
机构
[1] Fac Mech Eng & Naval Arch, Dept Aeronaut Engn, HR-10002 Zagreb, Croatia
来源
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III | 2010年 / 1281卷
关键词
Multibody systems; Holonomic and non-holonomic constraints; Lie groups; Manifolds; Numerical integration; SIMULATION;
D O I
10.1063/1.3497943
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The paper surveys geometric mathematical framework for computational modeling of multibody system dynamics. Starting with the configuration space of rigid body motion and analysis of it's Lie group structure, the elements of respective Lie algebra are addressed and basic relations pertinent to geometrical formulations of multibody system dynamics are surveyed. Dynamical model of multibody system on manifold introduced, along with the outline of geometric characteristics of holonomic and non-holonomic kinematical constraints.
引用
收藏
页码:1288 / 1291
页数:4
相关论文
共 7 条
[1]  
Bullo F., 2005, Geometric Control of Mechanical Systems
[2]  
Marsden JE., 1999, INTRO MECH SYMMETRY, V17
[3]  
Müller A, 2009, T FAMENA, V33, P1
[4]  
Shutz B.F., 1980, The Geometrical Methods of Mathematical Physics
[5]   Geometric properties of projective constraint violation stabilization method for generally constrained multibody systems on manifolds [J].
Terze, Zdravko ;
Naudet, Joris .
MULTIBODY SYSTEM DYNAMICS, 2008, 20 (01) :85-106
[6]   Structure of optimized generalized coordinates partitioned vectors for holonomic and non-holonomic systems [J].
Terze, Zdravko ;
Naudet, Joris .
MULTIBODY SYSTEM DYNAMICS, 2010, 24 (02) :203-218
[7]  
Terze Z, 2009, T FAMENA, V33, P1