The investigation of cobalt intercalation underneath epitaxial graphene on 6H-SiC(0001)

被引:10
作者
Zhang, Yuxi [1 ,2 ]
Zhang, Hanjie [1 ,2 ]
Cai, Yiliang [3 ]
Song, Junjie [4 ]
He, Pimo [1 ,2 ]
机构
[1] Zhejiang Univ, Dept Phys, Hangzhou 310027, Zhejiang, Peoples R China
[2] Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[3] Zhejiang Univ Water Resources & Elect Power, Dept Fundamental & Social Sci, Hangzhou 310018, Zhejiang, Peoples R China
[4] Zhejiang Univ, Ningbo Inst Technol, Sch Informat Sci & Engn, Ningbo 315100, Zhejiang, Peoples R China
关键词
epitaxial graphene; metal intercalation; scanning tunneling microscopy; density functional theory; GROWTH;
D O I
10.1088/1361-6528/aa53c3
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The intercalation behaviour of cobalt underneath both epitaxial graphene monolayer and bilayer on 6H-SiC(0001) have been investigated by scanning tunneling microscopy (STM) and density functional theory (DFT). Upon deposition, cobalt atoms prefer to agglomerate into clusters on the epitaxial graphene. After annealing the sample to 850 degrees C, the intercalation of the adsorbed cobalt atoms into both monolayer and bilayer epitaxial graphene on SiC takes place, as observed by the atomically resolved STM images. Further studies based on DFT modeling and simulated STM images show that, resulting from the interplay between the intercalated cobalt atoms and the carbon layers sandwiching it, the most energetically favourable intercalation sites of cobalt atoms underneath monolayer and bilayer graphene differ. Furthermore, the results show energy barriers of 0.60 eV and 0.41 eV for cobalt penetration through mono-vacancy defects at monolayer and bilayer graphene.
引用
收藏
页数:8
相关论文
共 39 条
[1]   An object-oriented scripting interface to a legacy electronic structure code [J].
Bahn, SR ;
Jacobsen, KW .
COMPUTING IN SCIENCE & ENGINEERING, 2002, 4 (03) :56-66
[2]   The surface science of graphene: Metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects [J].
Batzill, Matthias .
SURFACE SCIENCE REPORTS, 2012, 67 (3-4) :83-115
[3]  
Castillo E D, 2016, PHYS SCRIPTA, V91, P53007
[4]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[5]   First-principles calculation and scanning tunneling microscopy study of highly oriented pyrolytic graphite (0001) [J].
Cisternas, E. ;
Stavale, F. ;
Flores, M. ;
Achete, C. A. ;
Vargas, P. .
PHYSICAL REVIEW B, 2009, 79 (20)
[6]   Grain boundary loops in graphene [J].
Cockayne, Eric ;
Rutter, Gregory M. ;
Guisinger, Nathan P. ;
Crain, Jason N. ;
First, Phillip N. ;
Stroscio, Joseph A. .
PHYSICAL REVIEW B, 2011, 83 (19)
[7]   Patterning Quasi-Periodic Co 2D-Clusters underneath Graphene on SiC(0001) [J].
de Lima, Luis Henrique ;
Landers, Richard ;
de Siervo, Abner .
CHEMISTRY OF MATERIALS, 2014, 26 (14) :4172-4177
[8]   Atomic-scale magnetism of cobalt-intercalated graphene [J].
Decker, Regis ;
Brede, Jens ;
Atodiresei, Nicolae ;
Caciuc, Vasile ;
Bluegel, Stefan ;
Wiesendanger, Roland .
PHYSICAL REVIEW B, 2013, 87 (04)
[9]  
Emtsev KV, 2009, NAT MATER, V8, P203, DOI [10.1038/NMAT2382, 10.1038/nmat2382]
[10]   Semiempirical GGA-type density functional constructed with a long-range dispersion correction [J].
Grimme, Stefan .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2006, 27 (15) :1787-1799