Lithium-ion intercalation Behavior of LiFePO4 in aqueous and nonaqueous electrolyte solutions

被引:87
作者
He, Ping [1 ]
Zhang, Xiao
Wang, Yong-Gang
Cheng, Liang
Xia, Yong-Yao
机构
[1] Fudan Univ, Dept Chem, Shanghai 200433, Peoples R China
[2] Fudan Univ, Shanghai Key Lab Mol Catalysis & Innovat Mat, Shanghai 200433, Peoples R China
关键词
D O I
10.1149/1.2815609
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Lithium-ion intercalation behavior of LiFePO4 in both aqueous and nonaqueous electrolyte solutions was extensively investigated. LiFePO4 showed a much better rate capability in the Li2SO4 aqueous electrolyte than in the 1 M LiFP6-PC nonaqueous electrolyte. Kinetic properties of LiFePO4 particles were studied by cyclic voltammetry (CV) using a powder microelectrode. The apparent Li+ diffusion coefficients were evaluated from CV data, ranging from 7.23 X 10(-11) cm(2)/s in 0.05 M Li2SO4 to 2.05 X 10(-10) cm(2)/s in 1 M Li2SO4, and 4.06 X 10(-11) cm(2)/s in 1 M LiFP6-PC nonaqueous electrolyte. Electrochemical impedance spectroscopy demonstrated that the differences in the evaluated value of Li+ diffusion coefficients and the rate capability between two electrolyte systems are mainly due to the different interfacial charge transfer. A theoretical calculation with density functional theory was also employed to study the process of charge transfer at interface. (c) 2007 The Electrochemical Society.
引用
收藏
页码:A144 / A150
页数:7
相关论文
共 23 条
[1]   Lithium-ion transfer at the interface between lithium-ion conductive ceramic electrolyte and liquid electrolyte - A key to enhancing the rate capability of lithium-ion batteries [J].
Abe, T ;
Sagane, F ;
Ohtsuka, M ;
Iriyama, Y ;
Ogumi, Z .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (11) :A2151-A2154
[2]  
Bard A. J., 2001, ELECTROCHEMICAL METH, P234
[3]   Carbon-coated Li4Ti5O12 as a high rate electrode material for Li-ion intercalation [J].
Cheng, Liang ;
Li, Xi-Li ;
Liu, Hai-Jing ;
Xiong, Huan-Ming ;
Zhang, Ping-Wei ;
Xia, Yong-Yao .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (07) :A692-A697
[4]   Electronically conductive phospho-olivines as lithium storage electrodes [J].
Chung, SY ;
Bloking, JT ;
Chiang, YM .
NATURE MATERIALS, 2002, 1 (02) :123-128
[5]   Toward understanding of electrical limitations (electronic, ionic) in LiMPO4 (M = Fe, Mn) electrode materials [J].
Delacourt, C ;
Laffont, L ;
Bouchet, R ;
Wurm, C ;
Leriche, JB ;
Morcrette, M ;
Tarascon, JM ;
Masquelier, C .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (05) :A913-A921
[6]   Optimized lithium iron phosphate for high-rate electrochemical applications [J].
Franger, S ;
Bourbon, C ;
Le Cras, F .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (07) :A1024-A1027
[7]  
Frisch M. J., 2016, J AM CHEM SOC, DOI DOI 10.1021/JA205566W
[8]   KINETIC-PROPERTIES OF A PT/LAMBDA-MNO2 ELECTRODE FOR THE ELECTROINSERTION OF LITHIUM IONS IN AN AQUEOUS-PHASE [J].
KANOH, H ;
FENG, Q ;
MIYAI, Y ;
OOI, K .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (03) :702-707
[9]   Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries [J].
Liu, H. ;
Cao, Q. ;
Fu, L. J. ;
Li, C. ;
Wu, Y. P. ;
Wu, H. Q. .
ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (10) :1553-1557
[10]   Effects of carbon coatings on nanocomposite electrodes for lithium-ion batteries [J].
Liu, H. ;
Fu, L. J. ;
Zhang, H. P. ;
Gao, J. ;
Li, C. ;
Wu, Y. P. ;
Wu, H. Q. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (12) :A529-A533