On separable determination of σ-P-porous sets in Banach spaces

被引:4
作者
Cuth, Marek [1 ,2 ]
Rmoutil, Martin [1 ]
Zeleny, Miroslav [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Dept Math Anal, Prague 18675 8, Czech Republic
[2] Polskiej Akad Nauk, Inst Matemat, PL-00656 Warsaw, Poland
关键词
Separable reduction; Elementary submodel; Foran system; Porosity-like relation; Cone small set; Asplund space; Approximately convex function; Frechet differentiability; DIFFERENTIABILITY; CONVEX;
D O I
10.1016/j.topol.2014.11.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use a method involving elementary submodels and a partial converse of Foran lemma to prove separable reduction theorems concerning Souslin sigma-P-porous sets where P can be from a rather wide class of porosity-like relations in complete metric spaces. In particular, we separably reduce the notion of Souslin cone small set in Asplund spaces. As an application we prove that a continuous approximately convex function on an Asplund space is Frechet differentiable up to a cone small set. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:64 / 84
页数:21
相关论文
共 17 条
[1]  
[Anonymous], P AM MATH SOC
[2]  
[Anonymous], COMMENT MATH U CAROL
[3]  
[Anonymous], CZECHOSLOV MATH J
[4]  
[Anonymous], ANN MATH STUDIES
[5]  
[Anonymous], J NONLINEAR CONVEX A
[6]  
[Anonymous], FUNDAM MATH
[7]  
[Anonymous], ACTA U CAROL MATH PH
[8]  
Deville Robert, 1993, PITMAN MONOGRAPHS SU, V64
[9]   THE DUAL OF EVERY ASPLUND SPACE ADMITS A PROJECTIONAL RESOLUTION OF THE IDENTITY [J].
FABIAN, M ;
GODEFROY, G .
STUDIA MATHEMATICA, 1988, 91 (02) :141-151
[10]  
Kunen Kenneth., 1980, SET THEORY, V102