Energy harvesting performance of BaTiO3/poly(vinylidene fluoride-trifluoroethylene) spin coated nanocomposites

被引:95
作者
Nunes-Pereira, J. [1 ]
Sencadas, V. [1 ,2 ]
Correia, V. [1 ,3 ]
Cardoso, V. F. [1 ]
Han, Weihua [4 ]
Rocha, J. G. [3 ]
Lanceros-Mendez, S. [1 ]
机构
[1] Univ Minho, Dept Phys, P-4710057 Braga, Portugal
[2] Inst Politecn Cavado & do Ave, P-4750810 Barcelos, Portugal
[3] Univ Minho, Algoritmi Res Ctr, P-4800058 Guimaraes, Portugal
[4] Sch Phys Sci & Technol, Lanzhou 730000, Peoples R China
关键词
Polymer-matrix composites (PMCs); Smart materials; Electrical properties; PIEZOELECTRIC MATERIALS; NANOWIRE ARRAYS; COPOLYMER FILM; NANOGENERATOR; TRANSDUCERS; GENERATOR; DEVICES; FIBERS; SENSOR;
D O I
10.1016/j.compositesb.2014.12.001
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The energy harvesting efficiency of poly(vinylidene fluoride-trifluoroethylene) spin coated films and its nanocomposites with piezoelectric BaTiO3 have been investigated as a function of ceramic filler size and content. It is found that the best energy harvesting performance of similar to 0.281 mu W is obtained for the nanocomposite samples with 20% filler content of 10 nm size particles and for 5% filler content for the 100 and 500 nm size fillers. For the larger filler average sizes, the power decreases for filler contents above 5% due to increase of the mechanical stiffness of the samples. Due to the similar dielectric characteristics of the samples, the performance is mainly governed by the mechanical response. The obtained power values, easy processing and the low cost and robustness of the polymer, allow the implementation of the material for micro and nanogenerator applications. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:130 / 136
页数:7
相关论文
共 31 条
[1]  
Alper Erturk, 2011, PIEZOELECTRIC ENERGY, P1
[2]   A review of power harvesting using piezoelectric materials (2003-2006) [J].
Anton, Steven R. ;
Sodano, Henry A. .
SMART MATERIALS AND STRUCTURES, 2007, 16 (03) :R1-R21
[3]   Design considerations for piezoelectric polymer ultrasound transducers [J].
Brown, LF .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2000, 47 (06) :1377-1396
[4]   1.6 V Nanogenerator for Mechanical Energy Harvesting Using PZT Nanofibers [J].
Chen, Xi ;
Xu, Shiyou ;
Yao, Nan ;
Shi, Yong .
NANO LETTERS, 2010, 10 (06) :2133-2137
[5]   Electrospinning materials for energy-related applications and devices [J].
Dong, Zexuan ;
Kennedy, Scott J. ;
Wu, Yiquan .
JOURNAL OF POWER SOURCES, 2011, 196 (11) :4886-4904
[6]   Issues in mathematical modeling of piezoelectric energy harvesters [J].
Erturk, A. ;
Inman, D. J. .
SMART MATERIALS AND STRUCTURES, 2008, 17 (06)
[7]  
Erturk A, 2011, PIEZOELECTRIC ENERGY, DOI [DOI 10.1002/9781119991151.APP1, DOI 10.1002/9781119991151]
[8]   On the efficiency of electric power generation with piezoelectric ceramic [J].
Goldfarb, M ;
Jones, LD .
JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 1999, 121 (03) :566-571
[9]   A Nanogenerator for Energy Harvesting from a Rotating Tire and its Application as a Self-Powered Pressure/Speed Sensor [J].
Hu, Youfan ;
Xu, Chen ;
Zhang, Yan ;
Lin, Long ;
Snyder, Robert L. ;
Wang, Zhong Lin .
ADVANCED MATERIALS, 2011, 23 (35) :4068-+
[10]  
Kap Jin K, 1997, POLYMER, V38, P4881