Von Neumann Entropy in QFT

被引:12
作者
Longo, Roberto [1 ]
Xu, Feng [2 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
[2] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
关键词
ENTANGLEMENT; SPLIT; ALGEBRAS; STATES;
D O I
10.1007/s00220-020-03702-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the framework of Quantum Field Theory, we provide a rigorous, operator algebraic notion of entanglement entropy associated with a pair of open double cones O. O of the spacetime, where the closure of O is contained in O. Given a QFT net A of local vonNeumann algebrasA(O), we consider the von Neumann entropy SA( O, O) of the restriction of the vacuum state to the canonical intermediate type I factor for the inclusion of von Neumann algebras A( O). A( O) (split property). We show that this canonical entanglement entropy SA( O, O) is finite for the chiral conformal net on the circle generated by finitely many free Fermions (here double cones are intervals). To this end, we first study the notion of von Neumann entropy of a closed real linear subspace of a complex Hilbert space, that we then estimate for the local free fermion subspaces. We further consider the lower entanglement entropy SA(O, O), the infimum of the vacuum von Neumann entropy of F, where F here runs over all the intermediate, discrete type I von Neumann algebras. We prove that SA(O, O) is finite for the local chiral conformal net generated by finitely many commuting U(1)-currents.
引用
收藏
页码:1031 / 1054
页数:24
相关论文
共 33 条
[2]  
Araki H., 1970, PUBL RES I MATH SCI, V6, P385, DOI DOI 10.2977/PRIMS/1195193913
[3]   CAUSAL INDEPENDENCE AND THE ENERGY-LEVEL DENSITY OF STATES IN LOCAL QUANTUM-FIELD THEORY [J].
BUCHHOLZ, D ;
WICHMANN, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 106 (02) :321-344
[4]   PRODUCT STATES FOR LOCAL ALGEBRAS [J].
BUCHHOLZ, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1974, 36 (04) :287-304
[5]   Entanglement entropy in extended quantum systems INTRODUCTION [J].
Calabrese, Pasquale ;
Cardy, John ;
Doyon, Benjamin .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (50)
[6]   A c-theorem for entanglement entropy [J].
Casini, H. ;
Huerta, M. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (25) :7031-7036
[7]   Reduced density matrix and internal dynamics for multicomponent regions [J].
Casini, H. ;
Huerta, M. .
CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (18)
[8]   Entropy and the Spectral Action [J].
Chamseddine, Ali H. ;
Connes, Alain ;
van Suijlekom, Walter D. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 373 (02) :457-471
[9]  
Dixmier J., 1948, Revue Sci, V86, P387
[10]   STANDARD AND SPLIT INCLUSIONS OF VONNEUMANN-ALGEBRAS [J].
DOPLICHER, S ;
LONGO, R .
INVENTIONES MATHEMATICAE, 1984, 75 (03) :493-536