Relevance data for language models using maximum likelihood

被引:3
作者
Bodoff, D [1 ]
Wu, B
Wong, KYM
机构
[1] Hong Kong Univ Sci & Technol, Informat & Syst Management Dept, Hong Kong, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Phys, Hong Kong, Peoples R China
来源
JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY | 2003年 / 54卷 / 11期
关键词
D O I
10.1002/asi.10300
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a preliminary empirical test of a maximum likelihood approach to using relevance data for training information retrieval (IR) parameters. Similar to language models, our method uses explicitly hypothesized distributions for documents and queries, but we add to this an explicitly hypothesized distribution for relevance judgments. The method unifies document-oriented and query-oriented views. Performance is better than the Rocchio heuristic for document and/or query modification. The maximum likelihood methodology also motivates a heuristic estimate of the MILE optimization. The method can be used to test competing hypotheses regarding the processes of authors' term selection, searchers' term selection, and assessors' relevancy judgments.
引用
收藏
页码:1050 / 1061
页数:12
相关论文
共 27 条
[1]  
BARTELL BT, 1995, J AM SOC INFORM SCI, V46, P254, DOI 10.1002/(SICI)1097-4571(199505)46:4<254::AID-ASI3>3.0.CO
[2]  
2-S
[3]  
Bodoff D, 1999, J AM SOC INFORM SCI, V50, P49, DOI 10.1002/(SICI)1097-4571(1999)50:1<49::AID-ASI7>3.0.CO
[4]  
2-9
[5]  
Bodoff D, 2001, J AM SOC INF SCI TEC, V52, P785, DOI 10.1002/asi.1137
[6]  
BRAUEN TL, 1971, SMART RETRIEVAL SYST, P456
[7]   Is this document relevant? ... probably: A survey of probabilistic models in information retrieval [J].
Crestani, F ;
Lalmas, M ;
Van Rijsbergen, CJ ;
Campbell, I .
ACM COMPUTING SURVEYS, 1998, 30 (04) :528-552
[8]   USING PROBABILISTIC MODELS OF DOCUMENT-RETRIEVAL WITHOUT RELEVANCE INFORMATION [J].
CROFT, WB ;
HARPER, DJ .
JOURNAL OF DOCUMENTATION, 1979, 35 (04) :285-295
[9]   MODELS FOR RETRIEVAL WITH PROBABILISTIC INDEXING [J].
FUHR, N .
INFORMATION PROCESSING & MANAGEMENT, 1989, 25 (01) :55-72
[10]   A PROBABILISTIC LEARNING APPROACH FOR DOCUMENT INDEXING [J].
FUHR, N ;
BUCKLEY, C .
ACM TRANSACTIONS ON INFORMATION SYSTEMS, 1991, 9 (03) :223-248