Optimal Hebbian learning: A Probabilistic point of view

被引:0
作者
Pfister, JP [1 ]
Barber, D
Gerstner, W
机构
[1] EPFL, Lab Computat Neurosci, CH-1005 Lausanne, Switzerland
[2] Univ Edinburgh, Inst Adapt & Neural Computat, Edinburgh EH1 2QL, Midlothian, Scotland
来源
ARTIFICAIL NEURAL NETWORKS AND NEURAL INFORMATION PROCESSING - ICAN/ICONIP 2003 | 2003年 / 2714卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many activity dependent learning rules have been proposed in order to model long-term potentiation (LTP). Our aim is to derive a spike time dependent learning rule from a probabilistic optimality criterion. Our approach allows us to obtain quantitative results in terms of a learning window. This is done by maximising a given likelihood function with respect to the synaptic weights. The resulting weight adaptation is compared with experimental results.
引用
收藏
页码:92 / 98
页数:7
相关论文
共 26 条
[11]   A neuronal learning rule for sub-millisecond temporal coding [J].
Gerstner, W ;
Kempter, R ;
vanHemmen, JL ;
Wagner, H .
NATURE, 1996, 383 (6595) :76-78
[12]  
Gerstner W, 2002, SPIKING NEURON MODEL
[13]  
GUTIG R, IN PRESS LEARNING IN
[14]  
Hebb D, 1949, ORG BEHAV
[15]   Hebbian learning and spiking neurons [J].
Kempter, R ;
Gerstner, W ;
von Hemmen, JL .
PHYSICAL REVIEW E, 1999, 59 (04) :4498-4514
[16]   Modeling synaptic plasticity in conjunction with the timing of pre- and postsynaptic action potentials [J].
Kistler, WM ;
van Hemmen, JL .
NEURAL COMPUTATION, 2000, 12 (02) :385-405
[17]  
Markram Henry, 1995, Society for Neuroscience Abstracts, V21, P2007
[18]   Modeling back propagating action potential in weakly excitable dendrites of neocortical pyramidal cells [J].
Rapp, M ;
Yarom, Y ;
Segev, I .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (21) :11985-11990
[19]   Spike timing dependent synaptic plasticity in biological systems [J].
Roberts, PD ;
Bell, CC .
BIOLOGICAL CYBERNETICS, 2002, 87 (5-6) :392-403
[20]   An algorithm for modifying neurotransmitter release probability based on pre- and postsynaptic spike timing [J].
Senn, W ;
Markram, H ;
Tsodyks, M .
NEURAL COMPUTATION, 2001, 13 (01) :35-67