Chebyshev moment problems: Maximum entropy and kernel polynomial methods

被引:0
作者
Silver, RN
Roeder, H
Voter, AF
Kress, JD
机构
来源
MAXIMUM ENTROPY AND BAYESIAN METHODS | 1996年 / 79卷
关键词
computational physics; convex optimization; density of states; electronic structure; kernel polynomial method; large sparse matrices; moment problems; maximum entropy;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Two Chebyshev recursion methods are presented for calculations with very large sparse Hamiltonians, the kernel polynomial method (KPM) and the maximum entropy method (MEM). They are applicable to physical properties involving large numbers of eigenstates such as densities of states, spectral functions, thermodynamics, total energies for Monte Carlo simulations and forces for tight binding molecular dynamics. This paper emphasizes efficient algorithms.
引用
收藏
页码:187 / 194
页数:8
相关论文
empty
未找到相关数据