Asymptotic behavior of thermal nonequilibrium steady states for a driven chain of anharmonic oscillators

被引:45
作者
Rey-Bellet, L
Thomas, LE
机构
[1] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[2] Univ Virginia, Dept Math, Charlottesville, VA 22903 USA
关键词
D O I
10.1007/s002200000285
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a model of heat conduction introduced in [6], which consists of a finite nonlinear chain coupled to two heat reservoirs at different temperatures. We study the low temperature asymptotic behavior of the invariant measure. We show that, in this limit, the invariant measure is characterized by a variational principle. The main technical ingredients are some control theoretic arguments to extend the Freidlin-Wentzell theory of large deviations to a class of degenerate diffusions.
引用
收藏
页码:1 / 24
页数:24
相关论文
共 24 条
[1]  
AZENCOTT R, 1980, LECT NOTES MATH, V778, P2
[2]  
BENAROUS G, 1991, PROBAB THEORY REL, V90, P377
[3]   EXPONENTIAL DECAY OF A HEAT KERNEL ON THE DIAGONAL .1. [J].
BENAROUS, G ;
LEANDRE, R .
PROBABILITY THEORY AND RELATED FIELDS, 1991, 90 (02) :175-202
[4]  
Dembo A., 1998, APPL MATH, V38
[5]   Entropy production in nonlinear, thermally driven Hamiltonian systems [J].
Eckmann, JP ;
Pillet, CA ;
Rey-Bellet, L .
JOURNAL OF STATISTICAL PHYSICS, 1999, 95 (1-2) :305-331
[6]   Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures [J].
Eckmann, JP ;
Pillet, CA ;
Rey-Bellet, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 201 (03) :657-697
[7]  
ECKMANN JP, 1999, NONEQUILIBRIUM STAT
[8]   PROBABILITY OF 2ND LAW VIOLATIONS IN SHEARING STEADY-STATES [J].
EVANS, DJ ;
COHEN, EGD ;
MORRISS, GP .
PHYSICAL REVIEW LETTERS, 1993, 71 (15) :2401-2404
[9]  
Freidlin M., 1984, [Grundlehren der Mathematischen Wissenschaften, Fundamental Principles of Mathematical Sciences], V260
[10]   DYNAMICAL ENSEMBLES IN STATIONARY STATES [J].
GALLAVOTTI, G ;
COHEN, EGD .
JOURNAL OF STATISTICAL PHYSICS, 1995, 80 (5-6) :931-970