Sobolev embeddings, extensions and measure density condition

被引:105
作者
Hajlasz, Piotr [1 ]
Koskela, Pekka [2 ]
Tuominen, Heli [2 ]
机构
[1] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
[2] Univ Jyvaskyla, Dept Math & Stat, FI-40014 Jyvaskyla, Finland
基金
美国国家科学基金会; 芬兰科学院;
关键词
Sobolev spaces; Sobolev embedding; extension operator; measure density condition;
D O I
10.1016/j.jfa.2007.11.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
There are two main results in the paper. In the first one, Theorem 1, we prove that if the Sobolev embedding theorem holds in Omega, in any of all the possible cases, then Omega satisfies the measure density condition. The second main result, Theorem 5, provides several characterizations of the W-m,W-p-extension domains for 1 < p < infinity. As a corollary we prove that the property of being a W-m,W-p-extension domain, 1 < p <= infinity, is invariant under bi-Lipschitz mappings, Theorem 8. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:1217 / 1234
页数:18
相关论文
共 29 条
[1]  
Adams R., 1975, PURE APPL MATH, V65
[2]   UN-COMPLEMENTED SUBSPACES OF LP, 1 LESS THAN P LESS THAN 2 [J].
BENNETT, G ;
DOR, LE ;
GOODMAN, V ;
JOHNSON, WB ;
NEWMAN, CM .
ISRAEL JOURNAL OF MATHEMATICS, 1977, 26 (02) :178-187
[3]  
BREZIS H, 1980, COMMUN PART DIFF EQ, V5, P773
[4]   ESTIMATES FOR SINGULAR INTEGRAL OPERATORS IN TERMS OF MAXIMAL FUNCTIONS [J].
CALDERON, AP .
STUDIA MATHEMATICA, 1972, 44 (06) :563-582
[5]  
CALDERON AP, 1978, STUD MATH, V62, P75
[6]  
GAGLIARDO E, 1957, REND SEMIN MATEM U P, V27, P284
[7]  
GILBARG D, 2001, ELLIPTIC FRACTAL TYP
[8]  
Hajlasz P, 1998, REV MAT IBEROAM, V14, P601
[9]   QUASI-CONFORMAL MAPPINGS AND EXTENDABILITY OF FUNCTIONS IN SOBOLEV SPACES [J].
JONES, PW .
ACTA MATHEMATICA, 1981, 147 (1-2) :71-88
[10]  
JUDOVIC VI, 1961, SOV MATH DOKL, V2, P746