ON FOURIER MULTIPLIERS AND ABSOLUTE CONVERGENCE OF FOURIER INTEGRALS OF RADIAL FUNCTIONS

被引:0
作者
Trigub, R. M. [1 ]
机构
[1] Donetsk Natl Univ, Donetsk, Ukraine
关键词
OPERATORS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain sufficient conditions for the representability of a function in the form of an absolutely convergent Fourier integral. These conditions are given in terms of the joint behavior of the function and its derivatives at infinity, and their efficiency and exactness are verified with the use of a known example. We also consider radial functions of an arbitrary number of variables.
引用
收藏
页码:1487 / 1501
页数:15
相关论文
共 17 条
[1]  
BATEMAN H, 1954, HIGHER TRANSCENDENTA, V2
[2]  
Belinsky ES, 2005, RUSS J MATH PHYS, V12, P6
[3]  
Besov O. V., 1986, T MAT I STEKLOVA, V173, P164
[4]  
Besov OV., 1975, Integral Representations of Functions and Imbedding Theorems
[5]   ON THE SPECTRAL SYNTHESIS OF BOUNDED FUNCTIONS [J].
BEURLING, A .
ACTA MATHEMATICA, 1949, 81 (02) :225-238
[6]   INEQUALITIES FOR STRONGLY SINGULAR CONVOLUTION OPERATORS [J].
FEFFERMAN, C .
ACTA MATHEMATICA UPPSALA, 1970, 124 (1-2) :9-+
[7]  
Konovalov V. N., 1984, MAT ZAMETKI, V35, P369
[8]  
KONOVALOV VN, 1978, MAT ZAMETKI, V23, P67
[9]  
Liflyand E., 2009, 859 CRM
[10]  
Samko S.G., 1987, Integrals and derivatives of fractional order and some of their applications