3D Visualisation of PEMFC Electrode Structures Using FIB Nanotomography

被引:56
作者
Zils, S. [1 ]
Timpel, M. [2 ]
Arlt, T. [2 ]
Wolz, A. [1 ,3 ]
Manke, I. [2 ]
Roth, C. [1 ]
机构
[1] Tech Univ Darmstadt, Dept Mat Sci, D-64287 Darmstadt, Germany
[2] Helmholtz Ctr Berlin Mat & Energy, Dept Funct Mat, D-14109 Berlin, Germany
[3] CRP Henri, Dept Adv Mat & Struct, L-4002 Esch Sur Alzette, Luxembourg
关键词
Electrode Structure; Focused Ion Beam; Polymer Electrolyte Membrane Fuel Cell; Tomography; Water Management; MEMBRANE FUEL-CELL; MATHEMATICAL-MODEL; CATALYST LAYER; TOMOGRAPHY; RECONSTRUCTION; PERFORMANCE;
D O I
10.1002/fuce.201000133
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
It is well known that the electrode structure of a PEMFC has a huge influence on the water management and thereby on the cell performance. In this work, two MEAs - one prepared by an airbrushing technique and the other by a novel fast spray coating technique (multilayered MEA) - were analysed with respect to porosity, pore size distribution, tortuosity and their electrochemical performance. FIB nanotomography with following 3D reconstruction, SEM investigation on ultramicrotomic thin-sections, and single cell tests were performed on these MEAs. The results show a higher porosity and lower pore size for the multilayered MEA. The multilayered MEA reaches a Pt utilisation of 1,962 mW mg(-1) and a peak power density of 210 mW cm(-2), whereas the air-brushed MEA only provides a Pt utilisation of 879 mW mg(-1) and a peak power density of 218 mW cm(-2). The Pt utilisation calculations showed in combination with the structural characterisations that a homogeneous pore structure and Pt distribution provide an advantage with regard to performance and efficiency of the PEMFC. Furthermore, the multilayered MEA may offer an advantage over the airbrushed MEA in its long term stability, which was observed in preliminary tests.
引用
收藏
页码:966 / 972
页数:7
相关论文
共 29 条
[1]   Preparation of cross-sectional samples of proton exchange membrane fuel cells by ultramicrotomy for TEM [J].
Blom, DA ;
Dunlap, JR ;
Nolan, TA ;
Allard, LF .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (04) :A414-A418
[2]   Design equations for optimized PEM fuel cell electrodes [J].
Boyer, CC ;
Anthony, RG ;
Appleby, AJ .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2000, 30 (07) :777-786
[3]   Tomography of insulating biological and geological materials using focused ion beam (FIB) sectioning and low-kV BSE imaging [J].
De Winter, D. A. Matthijs ;
Schneijdenberg, C. T. W. M. ;
Lebbink, M. N. ;
Lich, B. ;
Verkleij, A. J. ;
Drury, M. R. ;
Humbel, B. M. .
JOURNAL OF MICROSCOPY, 2009, 233 (03) :372-383
[4]   Fuzzy nanoassemblies: Toward layered polymeric multicomposites [J].
Decher, G .
SCIENCE, 1997, 277 (5330) :1232-1237
[5]  
dos Santos e Lucato S. L., THESIS TU DARMSTADT
[6]   Defect structure for proton transport in a triflic acid monohydrate solid [J].
Eikerling, M ;
Paddison, SJ ;
Pratt, LR ;
Zawodzinski, TA .
CHEMICAL PHYSICS LETTERS, 2003, 368 (1-2) :108-114
[7]   Proton transfer in a single pore of a polymer electrolyte membrane [J].
Eikerling, M ;
Kornyshev, AA .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2001, 502 (1-2) :1-14
[8]   Cross-sectional insight in the water evolution and transport in polymer electrolyte fuel cells [J].
Hartnig, Christoph ;
Manke, Ingo ;
Kuhn, Robert ;
Kardjilov, Nikolay ;
Banhart, John ;
Lehnert, Werner .
APPLIED PHYSICS LETTERS, 2008, 92 (13)
[9]   Focused ion beam-scanning electron microscope: exploring large volumes of atherosclerotic tissue [J].
Hekking, L. H. P. ;
Lebbink, M. N. ;
De Winter, D. A. M. ;
Schneijdenberg, C. T. W. M. ;
Brand, C. M. ;
Humbel, B. M. ;
Verkleij, A. J. ;
Post, J. A. .
JOURNAL OF MICROSCOPY, 2009, 235 (03) :336-347
[10]   Three-dimensional analysis of porous BaTiO3 ceramics using FIB nanotomography [J].
Holzer, L ;
Indutnyi, F ;
Gasser, PH ;
Münch, B ;
Wegmann, M .
JOURNAL OF MICROSCOPY, 2004, 216 :84-95