Structural Engineering in the Self-Assembly of Amphiphilic Block Copolymers with Reactive Additives: Micelles, Vesicles, and Beyond

被引:7
|
作者
Jin, Lei [1 ]
Liu, Chung-Hao [2 ]
Cintron, Daniel [1 ]
Luo, Qiang [1 ]
Nieh, Mu-Ping [2 ,3 ]
He, Jie [1 ,2 ]
机构
[1] Univ Connecticut, Dept Chem, Storrs, CT 06269 USA
[2] Univ Connecticut, Inst Mat Sci, Polymer Program, Storrs, CT 06269 USA
[3] Univ Connecticut, Dept Chem & Biomol Engn, Storrs, CT 06269 USA
基金
美国国家科学基金会;
关键词
MULTIPLE MORPHOLOGIES; NANOSPHERES; POLYMERIZATION; NANOPARTICLES; GELATION; ROUTE;
D O I
10.1021/acs.langmuir.1c01554
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Control of polymer assemblies in solution is of great importance to determine the properties and applications of these polymer nanostructures. We report a novel co-self-assembly strategy to control the self-assembly outcomes of a micelle-forming amphiphilic block copolymer (BCP) of poly(ethylene oxide) (PEO) and poly[3-(trimethoxysilyl)propyl methacrylate] (PTMSPMA), PEO114-b-PTMSPMA(228). With a reactive and hydrophobic additive tetraethyl orthosilicate (TEOS), the assembly nanostructures of PEO114-b-PTMSPMA(228) are tunable. The swelling of the PTMSPMA block by hydrophobic TEOS increases the hydrophobic-to-hydrophilic ratio that enables a continuous morphological evolution from spherical micelles to vesicles and eventually to large compound vesicles. TEOS that co-hydrolyzes with the PTMSPMA block can further stabilize and fix these hybrid nanostructures. With high TEOS concentrations, these polymer assemblies can be further converted through thermal annealing into unique silica nanomaterials, including nanospheres, hollow nanoparticles with dual shells, and mesoporous silica frameworks that cannot be synthesized through conventional syntheses otherwise.
引用
收藏
页码:9865 / 9872
页数:8
相关论文
共 50 条
  • [1] Controlling the self-assembly pathways of amphiphilic block copolymers into vesicles
    Xiao, Mengying
    Xia, Guangjie
    Wang, Rong
    Xie, Daiqian
    SOFT MATTER, 2012, 8 (30) : 7865 - 7874
  • [2] Controlling the Self-Assembly Structure of Magnetic Nanoparticles and Amphiphilic Block-Copolymers: From Micelles to Vesicles
    Hickey, Robert J.
    Haynes, Alyssa S.
    Kikkawa, James M.
    Park, So-Jung
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (05) : 1517 - 1525
  • [3] Self-assembly of reactive amphiphilic block copolymers as mimetics for biological membranes
    Taubert, A
    Napoli, A
    Meier, W
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2004, 8 (06) : 598 - 603
  • [4] Folded amphiphilic homopolymer micelles in water: uniform self-assembly beyond amphiphilic random copolymers
    Kimura, Yoshihiko
    Ouchi, Makoto
    Terashima, Takaya
    POLYMER CHEMISTRY, 2020, 11 (32) : 5156 - 5162
  • [5] Nanosized micelles formed by the self-assembly of amphiphilic block copolymers with luminescent rhenium complexes
    Hou, SJ
    Man, KYK
    Chan, WK
    LANGMUIR, 2003, 19 (06) : 2485 - 2490
  • [6] Aqueous Self-Assembly of Y-Shaped Amphiphilic Block Copolymers into Giant Vesicles
    Li, Hanping
    Jin, Yong
    Fan, Baozhu
    Lai, Shuangquan
    Sun, Xiaopeng
    Qi, Rui
    MACROMOLECULAR RAPID COMMUNICATIONS, 2017, 38 (06)
  • [7] Formation of polymer vesicles by simultaneous chain growth and self-assembly of amphiphilic block copolymers
    Delaittre, Guillaume
    Dire, Charlotte
    Rieger, Jutta
    Putaux, Jean-Luc
    Charleux, Bernadette
    CHEMICAL COMMUNICATIONS, 2009, (20) : 2887 - 2889
  • [8] Nanofiber micelles from the self-assembly of block copolymers
    Qian, Jieshu
    Zhang, Meng
    Manners, Ian
    Winnik, Mitchell A.
    TRENDS IN BIOTECHNOLOGY, 2010, 28 (02) : 84 - 92
  • [9] Amphiphilic Block Copolymers: Their Structures, and Self-Assembly to Polymeric Micelles and Polymersomes as Drug Delivery Vehicles
    Kuperkar, Ketan
    Patel, Dhruvi
    Atanase, Leonard Ionut
    Bahadur, Pratap
    POLYMERS, 2022, 14 (21)
  • [10] Self-Assembly of Amphiphilic Block Copolypeptoids – Micelles, Worms and Polymersomes
    Corinna Fetsch
    Jens Gaitzsch
    Lea Messager
    Giuseppe Battaglia
    Robert Luxenhofer
    Scientific Reports, 6