Boundary stabilization of Ventcel problems

被引:23
作者
Heminna, A [1 ]
机构
[1] USTHB, Math Inst, El Alia 16111, Alger, Algeria
关键词
D O I
10.1051/cocv:2000123
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The problem of boundary stabilization for the isotropic linear elastodynamic system and the wave equation with Ventcel's conditions are considered (see [12]). The boundary observability and the exact controllability were etablished in [11]. We prove here the enegy decay to zero for the elastodynamic system with stationary Ventcel's conditions by introducing a nonlinear boundary feedback. We also give a boundary feedback leading to arbitrarily large energy decay rates for the elastodynamic system with evolutive Ventcel's conditions. A spectral study proves, finally, that the natural feedback is not sufficient to assure the exponential decay in the case of the wave equation with Ventcel's conditions.
引用
收藏
页码:591 / 622
页数:32
相关论文
共 30 条
[1]   Boundary observability, controllability and stabilization of linear elastodynamic systems [J].
Alabau, F ;
Komornik, V .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (05) :519-524
[2]  
[Anonymous], THEOR PROBAB APPL
[3]   The effect of a thin coating on the scattering of a time-harmonic wave for the helmholtz equation [J].
Bendali, A ;
Lemrabet, K .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1996, 56 (06) :1664-1693
[4]   Boundary stabilization of linear elastodynamic system.: A new Approach [J].
Bey, R ;
Heminna, A ;
Lohéac, JP .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (07) :563-566
[5]  
BOURQUIN F, 1997, P 2 INT C ACT CONTR
[6]  
BREZIS H., 1973, North-Holland Math. Stud., V5
[7]  
Curtain R. F., INTRO INFINITE DIMEN
[8]  
Duvaut G., 1972, INEQUATIONS MECANIQU
[9]  
Guesmia A, 1997, CR ACAD SCI I-MATH, V324, P1355, DOI 10.1016/S0764-4442(97)83574-4
[10]  
Haraux A., 1991, SYSTEMES DYNAMIQUES