Vector-valued Riesz potentials: Cartan-type estimates and related capacities

被引:16
作者
Eiderman, V. [1 ]
Nazarov, F. [2 ]
Volberg, A. [3 ]
机构
[1] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
[2] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[3] Michigan State Univ, Dept Math, E Lansing, MI 48823 USA
基金
美国国家科学基金会;
关键词
CALDERON-ZYGMUND OPERATORS; ANALYTIC CAPACITY; KERNELS; SETS;
D O I
10.1112/plms/pdq003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give sharp upper bounds for the size of the set of points in R-d, with d >= 1, where the Riesz transform of a Borel measure nu is large. This size is measured by the Hausdorff content with various gauge functions. We begin with the case when nu is a linear combination of N point masses. Among other things, we characterize all gauge functions for which the estimates do not blow up as N tends to infinity. In this case a routine limiting argument allows us to extend our bounds to all finite Borel measures. We also show how our techniques can be applied to estimates for certain capacities.
引用
收藏
页码:727 / 758
页数:32
相关论文
共 29 条
[1]  
Adams D.R., 1996, GRUNDLEHREN MATH WIS, V314
[2]   Cauchy transforms of point masses: The logarithmic derivative of polynomials [J].
Anderson, J. M. ;
Eiderman, V. Ya. .
ANNALS OF MATHEMATICS, 2006, 163 (03) :1057-1076
[3]  
[Anonymous], 1967, Selected problems on exceptional sets
[4]  
Christ M., 1990, Colloq. Math., V61, P601
[5]  
David G, 1998, REV MAT IBEROAM, V14, P369
[6]   A BOUNDEDNESS CRITERION FOR GENERALIZED CALDERON-ZYGMUND OPERATORS [J].
DAVID, G ;
JOURNE, JL .
ANNALS OF MATHEMATICS, 1984, 120 (02) :371-397
[7]   Cartan-type estimates for the Cauchy potential [J].
Eiderman, V. Ya. .
DOKLADY MATHEMATICS, 2006, 73 (02) :273-276
[8]  
Farag H. M., 1999, Publ. Mat, V43, P251
[9]  
Garnett J, 2006, MATH RES LETT, V13, P865
[10]   THIN SETS IN NONLINEAR POTENTIAL-THEORY [J].
HEDBERG, LI ;
WOLFF, TH .
ANNALES DE L INSTITUT FOURIER, 1983, 33 (04) :161-187