Weak linear bilevel programming problems: existence of solutions via a penalty method

被引:29
作者
Aboussoror, A
Mansouri, A
机构
[1] Univ Cadi Ayyad, SAFI, Ctr Etud Univ, Safi, Morocco
[2] Univ Cadi Ayyad, Fac Sci Semlalia, Dept Math, Marrakech, Morocco
关键词
bilevel programming; linear programming; duality; penalty methods;
D O I
10.1016/j.jmaa.2004.09.033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are concerned with a class of weak linear bilevel programs with nonunique lower level solutions. For such problems, we give via an exact penalty method an existence theorem of solutions. Then. we propose an algorithm. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:399 / 408
页数:10
相关论文
共 11 条
[1]  
Aboussoror A, 2002, ADV MATH RE, V1, P83
[2]   A SOLUTION METHOD FOR THE LINEAR STATIC STACKELBERG PROBLEM USING PENALTY-FUNCTIONS [J].
ANANDALINGAM, G ;
WHITE, DJ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1990, 35 (10) :1170-1173
[3]   A note on a penalty function approach for solving bilevel linear programs [J].
Campêlo, M ;
Dantas, S ;
Scheimberg, S .
JOURNAL OF GLOBAL OPTIMIZATION, 2000, 16 (03) :245-255
[4]   Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints [J].
Dempe, S .
OPTIMIZATION, 2003, 52 (03) :333-359
[5]   TOPOLOGICAL EXISTENCE AND STABILITY FOR STACKELBERG PROBLEMS [J].
LIGNOLA, MB ;
MORGAN, J .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1995, 84 (01) :145-169
[6]   Weak via strong Stackelberg problem: New results [J].
Loridan, P ;
Morgan, J .
JOURNAL OF GLOBAL OPTIMIZATION, 1996, 8 (03) :263-287
[7]  
LORIDAN P, 1992, P INT C OP RES, V90, P165
[8]  
Lucchetti R., 1987, Optimization, V18, P857, DOI 10.1080/02331938708843300
[9]  
Rockafellar, 2015, CONVEX ANAL
[10]   BILEVEL AND MULTILEVEL PROGRAMMING - A BIBLIOGRAPHY REVIEW [J].
VICENTE, LN ;
CALAMAI, PH .
JOURNAL OF GLOBAL OPTIMIZATION, 1994, 5 (03) :291-306